Multisensory Integration through Neural Coherence

[1]  T. Ono,et al.  Topographic distribution of modality-specific amygdalar neurons in alert monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[3]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[4]  Rainer Goebel,et al.  Neural synchrony correlates with surface segregation rules , 2000, Nature.

[5]  Werner Lutzenberger,et al.  Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli , 2006, NeuroImage.

[6]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[7]  Robert Oostenveld,et al.  Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming , 2008, NeuroImage.

[8]  John J. Foxe,et al.  Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study. , 2005, Cerebral cortex.

[9]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[10]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[11]  T. Sejnowski,et al.  Early Cross-Modal Interactions in Auditory and Visual Cortex Underlie a Sound-Induced Visual Illusion , 2007, The Journal of Neuroscience.

[12]  Marty G. Woldorff,et al.  Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity , 2005, Journal of Cognitive Neuroscience.

[13]  H Petsche,et al.  Synchronization between temporal and parietal cortex during multimodal object processing in man. , 1999, Cerebral cortex.

[14]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[15]  S. Shimojo,et al.  Sensory modalities are not separate modalities: plasticity and interactions , 2001, Current Opinion in Neurobiology.

[16]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[17]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M A Meredith,et al.  Descending efferents from the superior colliculus relay integrated multisensory information. , 1985, Science.

[19]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[20]  John McDonald,et al.  Sensory Integration and the Perceptual Experience of Persons with Autism , 2006, Journal of autism and developmental disorders.

[21]  A. Engel,et al.  High-frequency activity in human visual cortex is modulated by visual motion strength. , 2007, Cerebral cortex.

[22]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[23]  Shinsuke Shimojo,et al.  Sound-induced illusory flash perception: role of gamma band responses , 2002, Neuroreport.

[24]  T. Stanford,et al.  Evaluating the Operations Underlying Multisensory Integration in the Cat Superior Colliculus , 2005, The Journal of Neuroscience.

[25]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[26]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[27]  N. Logothetis,et al.  Integration of Touch and Sound in Auditory Cortex , 2005, Neuron.

[28]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[29]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[30]  N. Logothetis,et al.  Frontiers in Integrative Neuroscience Integrative Neuroscience Directed Interactions between Auditory and Superior Temporal Cortices and Their Role in Sensory Integration , 2022 .

[31]  N. Birbaumer,et al.  Dynamics of gamma-band activity induced by auditory pattern changes in humans. , 2002, Cerebral cortex.

[32]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.

[33]  A. Engel,et al.  Cognitive functions of gamma-band activity: memory match and utilization , 2004, Trends in Cognitive Sciences.

[34]  W. Singer,et al.  Relation between oscillatory activity and long-range synchronization in cat visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Shlomit Yuval-Greenberg,et al.  What You See Is Not (Always) What You Hear: Induced Gamma Band Responses Reflect Cross-Modal Interactions in Familiar Object Recognition , 2007, The Journal of Neuroscience.

[36]  John J. Foxe,et al.  Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. , 2002, Journal of neurophysiology.

[37]  Noriaki Kanayama,et al.  Crossmodal effect with rubber hand illusion and gamma-band activity. , 2007, Psychophysiology.

[38]  W. Singer,et al.  Reduced Synchronization in the Visual Cortex of Cats with Strabismic Amblyopia , 1994, The European journal of neuroscience.

[39]  Matthias M. Müller,et al.  Modulation of induced gamma band activity in the human EEG by attention and visual information processing. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[40]  M. Sur,et al.  Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex , 1990, Trends in Neurosciences.

[41]  M. Tervaniemi,et al.  Binding symbols and sounds: evidence from event-related oscillatory gamma-band activity. , 2007, Cerebral cortex.

[42]  Asif A Ghazanfar,et al.  Different neural frequency bands integrate faces and voices differently in the superior temporal sulcus. , 2009, Journal of neurophysiology.

[43]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[44]  A. Engel,et al.  Single-trial EEG–fMRI reveals the dynamics of cognitive function , 2006, Trends in Cognitive Sciences.

[45]  Oliver W. Sakowitz,et al.  Oscillatory frontal theta responses are increased upon bisensory stimulation , 2000, Clinical Neurophysiology.

[46]  P König,et al.  Direct physiological evidence for scene segmentation by temporal coding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Kisley,et al.  Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation , 2006, Clinical Neurophysiology.

[48]  Christoph Kayser,et al.  Do early sensory cortices integrate cross-modal information? , 2007, Brain Structure and Function.

[49]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[50]  John J. Foxe,et al.  Impaired multisensory processing in schizophrenia: Deficits in the visual enhancement of speech comprehension under noisy environmental conditions , 2007, Schizophrenia Research.

[51]  G. Laurent,et al.  Odour encoding by temporal sequences of firing in oscillating neural assemblies , 1996, Nature.

[52]  A. Amedi,et al.  Functional imaging of human crossmodal identification and object recognition , 2005, Experimental Brain Research.

[53]  Andreas K. Engel,et al.  Gamma-band activity reflects multisensory matching in working memory , 2009, Experimental Brain Research.

[54]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.

[55]  D. Bavelier,et al.  Cross-modal plasticity: where and how? , 2002, Nature Reviews Neuroscience.

[56]  Rodrigo Quian Quiroga,et al.  Spatio-temporal frequency characteristics of intersensory components in audiovisually evoked potentials. , 2005, Brain research. Cognitive brain research.

[57]  L. Demetrius Adaptive value, entropy and survivorship curves , 1978, Nature.

[58]  O W Sakowitz,et al.  Bisensory stimulation increases gamma-responses over multiple cortical regions. , 2001, Brain research. Cognitive brain research.

[59]  John J. Foxe,et al.  The case for feedforward multisensory convergence during early cortical processing , 2005, Neuroreport.

[60]  Barry E. Stein,et al.  Book Review: Cortex Governs Multisensory Integration in the Midbrain , 2002 .

[61]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[62]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[63]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[64]  Werner Lutzenberger,et al.  Hearing lips: gamma-band activity during audiovisual speech perception. , 2005, Cerebral cortex.

[65]  S. Farmer,et al.  Rhythmicity, synchronization and binding in human and primate motor systems , 1998, The Journal of physiology.

[66]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[67]  Burkhard Maess,et al.  Memory-matches evoke human gamma-responses , 2004, BMC Neuroscience.

[68]  T. Stanford,et al.  Multisensory Integration Shortens Physiological Response Latencies , 2007, The Journal of Neuroscience.

[69]  Zita Márkus,et al.  Multisensory integration in the basal ganglia , 2006, The European journal of neuroscience.

[70]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[71]  Matthias M. Müller,et al.  Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. , 2004, Cerebral cortex.

[72]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[73]  Mark W. Greenlee,et al.  Neural Correlates of Coherent Audiovisual Motion Perception , 2007 .

[74]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[75]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[76]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[77]  B. Stein,et al.  Interactions among converging sensory inputs in the superior colliculus. , 1983, Science.

[78]  Christian Gerloff,et al.  Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. , 2005, Cerebral cortex.

[79]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[80]  Edward M. Hubbard,et al.  Neurocognitive Mechanisms of Synesthesia , 2005, Neuron.

[81]  Seppo P. Ahlfors,et al.  Biasing the brain’s attentional set: I. Cue driven deployments of intersensory selective attention , 2005, Experimental Brain Research.

[82]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[83]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[84]  H. Scheich,et al.  Stimulus-related gamma oscillations in primate auditory cortex. , 2002, Journal of neurophysiology.

[85]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[86]  T. Ono,et al.  Auditory thalamus integrates visual inputs into behavioral gains , 2005, Nature Neuroscience.

[87]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[88]  M. Meredith,et al.  On the neuronal basis for multisensory convergence: a brief overview. , 2002, Brain research. Cognitive brain research.

[89]  C. Spence,et al.  Multisensory perception: Beyond modularity and convergence , 2000, Current Biology.

[90]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[91]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[92]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[93]  Daniel Senkowski,et al.  Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations , 2007, Neuropsychologia.

[94]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[95]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[96]  W. Singer,et al.  Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[98]  Lawrence M. Ward,et al.  Asynchrony from synchrony: long-range gamma-band neural synchrony accompanies perception of audiovisual speech asynchrony , 2008, Experimental Brain Research.

[99]  C. Frith,et al.  Modulation of human visual cortex by crossmodal spatial attention. , 2000, Science.

[100]  Matthias M. Müller,et al.  Directed Cortical Information Flow during Human Object Recognition: Analyzing Induced EEG Gamma-Band Responses in Brain's Source Space , 2007, PloS one.

[101]  Asif A. Ghazanfar,et al.  Integration of Bimodal Looming Signals through Neuronal Coherence in the Temporal Lobe , 2008, Current Biology.