Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb).

Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

[1]  N. Avarvari,et al.  Enantiopure Radical Cation Salt Based on Tetramethyl-Bis(ethylenedithio)-Tetrathiafulvalene and Hexanuclear Rhenium Cluster , 2016 .

[2]  N. Avarvari,et al.  Complete series of chiral paramagnetic molecular conductors based on tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) and Chloranilate-bridged heterobimetallic honeycomb layers. , 2015, Inorganic chemistry.

[3]  D. Amabilino,et al.  Hierarchical self-assembly of supramolecular helical fibres from amphiphilic C3-symmetrical functional tris(tetrathiafulvalenes). , 2014, Chemistry.

[4]  H. Matsuzawa,et al.  Dimeric tetrathiafulvalene linked to pseudo-ortho-[2.2]paracyclophane: chiral electrochromic properties and use as a chiral dopant. , 2014, Chemistry, an Asian journal.

[5]  N. Avarvari,et al.  Enantiopure Conducting Salts of Dimethylbis(ethylenedithio)tetrathiafulvalene (DM-BEDT-TTF) with the Hexachlororhenate(IV) Anion: Conducting Salts of Dimethylbis(ethylenedithio)tetrathiafulvalene , 2014 .

[6]  N. Avarvari,et al.  Electrical magnetochiral anisotropy in a bulk chiral molecular conductor , 2014, Nature Communications.

[7]  N. Avarvari,et al.  Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors , 2014 .

[8]  N. Avarvari,et al.  Chirality driven metallic versus semiconducting behavior in a complete series of radical cation salts based on dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF). , 2013, Journal of the American Chemical Society.

[9]  F. Pelletier,et al.  Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts , 2013 .

[10]  N. Avarvari,et al.  Ethylenedithio-tetrathiafulvalene-helicenes: electroactive helical precursors with switchable chiroptical properties. , 2013, Chemistry.

[11]  N. Avarvari,et al.  Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts. , 2013, Chirality.

[12]  Takehiko Mori,et al.  Structural transitions from triangular to square molecular arrangements in the quasi-one-dimensional molecular conductors (DMEDO-TTF)2XF6 (X = P, As, and Sb). , 2012, Journal of the American Chemical Society.

[13]  Yasuto Sone,et al.  Tetrathiafulvalenylallene: a new class of donor molecules having strong chiroptical properties in neutral and doped states. , 2011, Organic letters.

[14]  E. Levillain,et al.  Persistent mixed-valence [(TTF)2]+* dyad of a chiral bis(binaphthol)-tetrathiafulvalene (TTF) derivative. , 2010, Chemistry.

[15]  E. Coronado,et al.  A chiral ferromagnetic molecular metal. , 2010, Journal of the American Chemical Society.

[16]  N. Avarvari,et al.  Order versus disorder in chiral tetrathiafulvalene-oxazoline radical-cation salts: structural and theoretical investigations and physical properties. , 2010, Chemistry.

[17]  N. Avarvari,et al.  C(2)-symmetric chiral tetrathiafulvalene-bis(oxazolines) (TTF-BOX): new precursors for organic materials and electroactive metal complexes. , 2009, Chemical communications.

[18]  N. Avarvari,et al.  Strategies towards chiral molecular conductors , 2009 .

[19]  L. Male,et al.  Novel enantiopure bis(pyrrolo)tetrathiafulvalene donors exhibiting chiral crystal packing arrangements , 2009 .

[20]  N. Avarvari,et al.  Chemo- and enantioselective sulfoxidation of bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) into chiral BEDT-TTF-sulfoxide. , 2008, Chemical communications.

[21]  T. Imakubo,et al.  New unsymmetrical donor dimethyl(ethylenedioxy)tetraselenafulvalene (DMEDO-TSeF): Structures and properties of its cation radical salts , 2005 .

[22]  Huifen Nie,et al.  Synthetic strategies to chiral organosulfur donors related to bis(ethylenedithio)tetrathiafulvalene. , 2005, Organic & biomolecular chemistry.

[23]  N. Avarvari,et al.  Chiral molecular metals: syntheses, structures, and properties of the AsF(6)(-) salts of racemic (+/-)-, (R)-, and (S)-tetrathiafulvalene-oxazoline derivatives. , 2005, Journal of the American Chemical Society.

[24]  S. Roth,et al.  Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes , 2002 .

[25]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[26]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[27]  Segura,et al.  New chiral binaphthyl building blocks: synthesis of the first optically active tetrathiafulvalene and 11,11,12,12-tetracyano-9, 10-anthraquinodimethane dimers , 2000, The Journal of organic chemistry.

[28]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[29]  Shu-Kun Lin The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology(International Union of Crystallography Monographs on Crystallography, 9). By Gautam R. Desiraju , 1999 .

[30]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[31]  C. Rovira,et al.  A new family of molecular metals based on bis(ethylenethio)tetrathiafulvalene (BET-TTF) and octahedral counterions , 1995 .

[32]  M. Tokumoto,et al.  Crystal Structure and Conductivity of Chiral Radical Ion Salts (Me2ET)2X , 1993 .

[33]  A. Kobayashi,et al.  Dimensionality Examination of Cation Radical Salts Based on EDT-TTF (EDT-TTF = Ethylenedithiotetrathiafulvalene) , 1989 .

[34]  J. Dunitz,et al.  Chiral metals? A chiral substrate for organic conductors and superconductors , 1986 .

[35]  T. Emge,et al.  Role of the intermolecular interactions in the two-dimensional ambient-pressure organic superconductors. beta. -(ET)/sub 2/I/sub 3/ and. beta. -(ET)/sub 2/IBr/sub 2/ , 1985 .