Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition
暂无分享,去创建一个
[1] Tobias Jahnke,et al. Numerical integrators for quantum dynamics close to the adiabatic limit , 2003, Numerische Mathematik.
[2] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[3] Volker Grimm,et al. Exponentielle Integratoren als Lange-Zeitschritt-Verfahren für oszillatorsiche Differentialgleichungen zweiter Ordnung , 2002 .
[4] Tobias Jahnke,et al. Long-Time-Step Integrators for Almost-Adiabatic Quantum Dynamics , 2004, SIAM J. Sci. Comput..
[5] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[6] Michael Valášek,et al. Kinematics and Dynamics of Machinery , 1996 .
[7] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[8] Robert D. Skeel,et al. Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..
[9] A. Iserles. On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .
[10] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[11] Tobias Jahnke,et al. Numerische Verfahren für fast adiabatische Quantendynamik , 2003 .
[12] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[13] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[14] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[15] Arieh Iserles,et al. On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .