Experimentally Based Testing of the Enthalpy-Porosity Method for the Numerical Simulation of Phase Change of Paraffin-Type Pcms

[1]  Chang Liu,et al.  Assessment of the global energy transition: Based on trade embodied energy analysis , 2023, Energy.

[2]  Omid Ali Akbari,et al.  Numerical investigation of thermal energy storage system loaded with nano-enhanced phase change material with Koch snowflake fractal cross-section , 2022, Journal of Energy Storage.

[3]  Zhonghao Rao,et al.  Anisotropic porous skeleton for efficient thermal energy storage and enhanced heat transfer: Experiments and numerical models , 2022, Journal of Energy Storage.

[4]  K. Hooman,et al.  Numerical study of a dual-PCM thermal energy storage unit with an optimized low-volume fin structure , 2022, Applied Thermal Engineering.

[5]  Dibakar Rakshit,et al.  No fins attached? Numerical analysis of internal–external fins coupled PCM melting for solar applications , 2022, Applied Thermal Engineering.

[6]  A. Sari,et al.  Investigation of physico-mechanical, thermal properties and solar thermoregulation performance of shape-stable attapulgite based composite phase change material in foam concrete , 2022, Solar Energy.

[7]  Rajesh Kumar,et al.  CFD analysis for heat transfer comparison in circular, rectangular and elliptical tube heat exchangers filled with PCM , 2022, Materials Today: Proceedings.

[8]  Zhe Liu,et al.  Preparation of polyurethane solid-solid low temperature PCMs granular asphalt mixes and study of phase change temperature control behavior , 2022, Solar Energy.

[9]  D. Brüggemann,et al.  Influence of density change during melting inside a cavity: Theoretical scaling laws and numerical analysis , 2021, International Journal of Heat and Mass Transfer.

[10]  Deliang Chen,et al.  Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin , 2020 .

[11]  C. Cortés,et al.  Characterization of Thermophysical Properties of Phase Change Materials Using Unconventional Experimental Technologies , 2020, Energies.

[12]  A. Buonomano,et al.  The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation , 2020 .

[13]  M. Kenisarin,et al.  Melting and solidification of PCMs inside a spherical capsule: A critical review , 2020 .

[14]  Zhonghao Rao,et al.  Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite phase change materials for thermal energy storage , 2019, Solar Energy.

[15]  L. Cabeza,et al.  Experimental Methods for the Characterization of Materials for Latent Thermal Energy Storage , 2018, Recent Advancements in Materials and Systems for Thermal Energy Storage.

[16]  Luisa F. Cabeza,et al.  The connection between the heat storage capability of PCM as a material property and their performance in real scale applications , 2017 .

[17]  Shuli Liu,et al.  Investigating the impact of Cp-T values determined by DSC on the PCM-CFD model , 2017 .

[18]  Jay G. Sanjayan,et al.  Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage , 2016 .

[19]  Shuli Liu,et al.  Review on Heat Transfer Mechanisms and Characteristics in Encapsulated PCMs , 2015 .

[20]  A. Oliva,et al.  Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties – Application to the melting of n-Octadecane inside a spherical capsule , 2015 .

[21]  Luisa F. Cabeza,et al.  Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties , 2015 .

[22]  Xing Jin,et al.  Determination of the PCM melting temperature range using DSC , 2014 .

[23]  Brian Norton,et al.  Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method , 2014 .

[24]  L. Cabeza,et al.  Review of the T-history method to determine thermophysical properties of phase change materials (PCM) , 2013 .

[25]  L. Cabeza,et al.  Intercomparative tests on phase change materials characterisation with differential scanning calorimeter , 2013 .

[26]  G. Ziskind,et al.  Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments , 2010 .

[27]  K. A. Antonopoulos,et al.  Improvements to the measurement of the thermal properties of phase change materials , 2010 .

[28]  Harald Mehling,et al.  Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods , 2009 .

[29]  Liwu Fan,et al.  Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule , 2009 .

[30]  Luisa F. Cabeza,et al.  Determination of the enthalpy of PCM as a function of temperature using a heat‐flux DSC—A study of different measurement procedures and their accuracy , 2008 .

[31]  F. L. Tan,et al.  Constrained and unconstrained melting inside a sphere , 2008 .

[32]  Gennady Ziskind,et al.  Numerical and experimental study of melting in a spherical shell , 2007 .

[33]  Suresh V. Garimella,et al.  Experimental and numerical study of melting in a cylinder , 2006 .

[34]  L. Cabeza,et al.  Determination of enthalpy?temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties , 2003 .

[35]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[36]  Vaughan R Voller,et al.  ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL , 1988 .

[37]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[38]  P. K. Sullivan Solid-Phase Behavior of Several Long-Chain n-Paraffins, Esters, and a Ketone. , 1974, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[39]  M. Broadhurst,et al.  An Analysis of the Solid Phase Behavior of the Normal Paraffins , 1962, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[40]  S. Haussener,et al.  Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials , 2021 .

[41]  Luisa F. Cabeza,et al.  Standardization of PCM characterization via DSC , 2015 .

[42]  Harald Mehling,et al.  Development of standards for materials testing and quality control of PCM , 2006 .

[43]  H. Fröhlich Phase transitions of solid paraffins and the flexibility of hydrocarbon chains , 1944 .