HDAC inhibition ameliorates cone survival in retinitis pigmentosa mice

[1]  N. Mizushima,et al.  Diverse Cellular Roles of Autophagy. , 2019, Annual review of cell and developmental biology.

[2]  C. Grimm,et al.  Light stress affects cones and horizontal cells via rhodopsin-mediated mechanisms. , 2019, Experimental eye research.

[3]  T. Langmann,et al.  Microglia in Retinal Degeneration , 2019, Front. Immunol..

[4]  Hyungwon Choi,et al.  Moving beyond P values: data analysis with estimation graphics , 2019, Nature Methods.

[5]  Diana Romero HDAC inhibitors tested in phase III trial , 2019, Nature Reviews Clinical Oncology.

[6]  C. Cepko,et al.  Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa , 2019, Proceedings of the National Academy of Sciences.

[7]  R. Shah Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology , 2019, Drug Safety.

[8]  Franck P. Martial,et al.  Measuring vision using innate behaviours in mice with intact and impaired retina function , 2019, Scientific Reports.

[9]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[10]  Runan Yao,et al.  iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data , 2018, BMC Bioinformatics.

[11]  U. Greferath,et al.  Failure of Autophagy-Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed in Cln6nclf Mice. , 2018, Investigative ophthalmology & visual science.

[12]  D. Klionsky,et al.  Inhibiting autophagy reduces retinal degeneration caused by protein misfolding , 2018, Autophagy.

[13]  J. Bergh,et al.  EMA Review of Panobinostat (Farydak) for the Treatment of Adult Patients with Relapsed and/or Refractory Multiple Myeloma , 2018, The oncologist.

[14]  Denis Torre,et al.  BioJupies: Automated Generation of Interactive Notebooks for RNA-seq Data Analysis in the Cloud , 2018, bioRxiv.

[15]  Sonia Tarazona,et al.  PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data , 2018, bioRxiv.

[16]  Thomas Euler,et al.  Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration , 2018, Proceedings of the National Academy of Sciences.

[17]  M. Biel,et al.  Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa , 2018, Front. Immunol..

[18]  P. Campochiaro,et al.  The mechanism of cone cell death in Retinitis Pigmentosa , 2017, Progress in Retinal and Eye Research.

[19]  F. Rieke,et al.  Stimulation of functional neuronal regeneration from Müller glia in adult mice , 2017, Nature.

[20]  D. Agoston How to Translate Time? The Temporal Aspect of Human and Rodent Biology , 2017, Front. Neurol..

[21]  A. Urtti,et al.  Pharmacokinetic aspects of retinal drug delivery , 2017, Progress in Retinal and Eye Research.

[22]  R. Casson,et al.  A review of the mechanisms of cone degeneration in retinitis pigmentosa , 2016, Acta ophthalmologica.

[23]  S. Tsang,et al.  Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. , 2016, The Journal of clinical investigation.

[24]  P. Boya,et al.  Autophagy in the eye: Development, degeneration, and aging , 2016, Progress in Retinal and Eye Research.

[25]  B. Arango-Gonzalez,et al.  HDAC inhibition in the cpfl1 mouse protects degenerating cone photoreceptors in vivo. , 2016, Human molecular genetics.

[26]  Thomas Euler,et al.  Calcium dynamics change in degenerating cone photoreceptors. , 2016, Human molecular genetics.

[27]  Marc Hafner,et al.  L1000CDS2: LINCS L1000 characteristic direction signatures search engine , 2016, npj Systems Biology and Applications.

[28]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[29]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[30]  O. L. Moritz,et al.  NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. , 2016, Human molecular genetics.

[31]  H. Kaplan,et al.  Two-Step Reactivation of Dormant Cones in Retinitis Pigmentosa. , 2016, Cell reports.

[32]  K. Kaarniranta,et al.  Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes. , 2016, European journal of pharmacology.

[33]  C. Punzo,et al.  Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy , 2016, Oncotarget.

[34]  Peer Bork,et al.  Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats , 2015, Cell systems.

[35]  J. Laubach,et al.  Panobinostat for the Treatment of Multiple Myeloma , 2015, Clinical Cancer Research.

[36]  F. Schottler,et al.  Autophagy supports color vision , 2015, Autophagy.

[37]  W. Gan,et al.  Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration , 2015, EMBO molecular medicine.

[38]  S. E. Barker,et al.  Long-term effect of gene therapy on Leber's congenital amaurosis. , 2015, The New England journal of medicine.

[39]  T. Léveillard,et al.  Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis , 2015, Cell.

[40]  C. Punzo,et al.  Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. , 2015, The Journal of clinical investigation.

[41]  R. Apte,et al.  Autophagy supports survival and phototransduction protein levels in rod photoreceptors , 2015, Cell Death and Differentiation.

[42]  T. Léveillard,et al.  Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. , 2015, The Journal of clinical investigation.

[43]  P. Boya,et al.  Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa , 2014, Cell Death and Differentiation.

[44]  Thomas Euler,et al.  Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration , 2014, PloS one.

[45]  S. Mitter,et al.  Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD , 2014, Autophagy.

[46]  KumarAtul,et al.  Efficacy of oral valproic acid in patients with retinitis pigmentosa. , 2014 .

[47]  Jacqueline S. Stevens,et al.  Histone deacetylase inhibition induces long-lasting changes in maternal behavior and gene expression in female mice. , 2014, Endocrinology.

[48]  A. Bird,et al.  Geographic atrophy: a histopathological assessment. , 2014, JAMA ophthalmology.

[49]  Günther Zeck,et al.  Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury , 2014, Front. Cell. Neurosci..

[50]  A. Dinculescu,et al.  Review: The history and role of naturally occurring mouse models with Pde6b mutations , 2013, Molecular vision.

[51]  C. Grimm,et al.  p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration , 2013, Cell Death and Disease.

[52]  K. Fujita,et al.  Assessing quality of life in the treatment of patients with age-related macular degeneration: clinical research findings and recommendations for clinical practice , 2013, Clinical ophthalmology.

[53]  C. Cepko,et al.  Retinal gene therapy coming of age. , 2013, Human gene therapy.

[54]  Andreas Hierlemann,et al.  Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection , 2012, Journal of Neuroscience Methods.

[55]  S. Akbarian,et al.  Epigenetic mechanisms in neurological disease , 2012, Nature Medicine.

[56]  Thomas Euler,et al.  Light-Driven Calcium Signals in Mouse Cone Photoreceptors , 2012, The Journal of Neuroscience.

[57]  P. Matthias,et al.  Interplay between histone deacetylases and autophagy ‐ from cancer therapy to neurodegeneration , 2012, Immunology and cell biology.

[58]  R. Masland,et al.  Physiological clustering of visual channels in the mouse retina. , 2011, Journal of neurophysiology.

[59]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[60]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[61]  S. Jacobson,et al.  The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. , 2010, Annual review of neuroscience.

[62]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[63]  V. Sée,et al.  p53-mediated delayed NF-κB activity enhances etoposide-induced cell death in medulloblastoma , 2010, Cell Death and Disease.

[64]  Sheng-Kwei Song,et al.  Vitreous Volume of the Mouse Measured by Quantitative High-Resolution MRI , 2010 .

[65]  P. Farinelli,et al.  Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse , 2010, Cell Death and Disease.

[66]  Constance L. Cepko,et al.  HDAC4 Regulates Neuronal Survival in Normal and Diseased Retinas , 2009, Science.

[67]  E. Clementi,et al.  HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment , 2008, Proceedings of the National Academy of Sciences.

[68]  E. Seto,et al.  HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention , 2007, Oncogene.

[69]  S. Daiger,et al.  Perspective on genes and mutations causing retinitis pigmentosa. , 2007, Archives of ophthalmology.

[70]  T. Miyakawa,et al.  Light/dark Transition Test for Mice , 2006, Journal of visualized experiments : JoVE.

[71]  S. Perlman,et al.  Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia , 2006, Nature chemical biology.

[72]  C. Gentili,et al.  Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway , 2006, Journal of neurochemistry.

[73]  Jessica E. Bolden,et al.  Anticancer activities of histone deacetylase inhibitors , 2006, Nature Reviews Drug Discovery.

[74]  P. Campochiaro,et al.  Antioxidants reduce cone cell death in a model of retinitis pigmentosa. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. O'Reilly,et al.  RNAi‐based suppression and replacement of rds‐peripherin in retinal organotypic culture , 2006, Human mutation.

[76]  C. Grimm,et al.  Rpe65 as a modifier gene for inherited retinal degeneration , 2006, The European journal of neuroscience.

[77]  J. Saklatvala The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. , 2004, Current opinion in pharmacology.

[78]  T. Léveillard,et al.  Identification and characterization of rod-derived cone viability factor , 2004, Nature Genetics.

[79]  Vera Rogiers,et al.  Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. , 2004, Current medicinal chemistry.

[80]  N. Bressler Age-related macular degeneration is the leading cause of blindness... , 2004, JAMA.

[81]  R. V. Rajala,et al.  Involvement of Insulin/Phosphoinositide 3-Kinase/Akt Signal Pathway in 17β-Estradiol-mediated Neuroprotection* , 2004, Journal of Biological Chemistry.

[82]  Sheila Nirenberg,et al.  Classification of retinal ganglion cells: a statistical approach. , 2003, Journal of neurophysiology.

[83]  M. Hascöet,et al.  The mouse light/dark box test. , 2003, European journal of pharmacology.

[84]  V. Rogiers,et al.  Major phase I biotransformation pathways of Trichostatin a in rat hepatocytes and in rat and human liver microsomes. , 2002, Drug metabolism and disposition: the biological fate of chemicals.

[85]  N. Holbrook,et al.  Cellular response to oxidative stress: Signaling for suicide and survival * , 2002, Journal of cellular physiology.

[86]  P. Marks,et al.  Histone deacetylases and cancer: causes and therapies , 2001, Nature Reviews Cancer.

[87]  T. Gardner,et al.  Insulin Rescues Retinal Neurons from Apoptosis by a Phosphatidylinositol 3-Kinase/Akt-mediated Mechanism That Reduces the Activation of Caspase-3* , 2001, The Journal of Biological Chemistry.

[88]  M. Karin,et al.  Mammalian MAP kinase signalling cascades , 2001, Nature.

[89]  D. F. Andrews,et al.  A one-hit model of cell death in inherited neuronal degenerations , 2000, Nature.

[90]  P. Marks,et al.  Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors , 1999, Nature.

[91]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. Dorsa,et al.  The Mitogen-Activated Protein Kinase Pathway Mediates Estrogen Neuroprotection after Glutamate Toxicity in Primary Cortical Neurons , 1999, The Journal of Neuroscience.

[93]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[94]  F. Hobbs,et al.  Identification of a Novel Inhibitor of Mitogen-activated Protein Kinase Kinase* , 1998, The Journal of Biological Chemistry.

[95]  M. Lavail,et al.  Protection of mouse photoreceptors by survival factors in retinal degenerations. , 1998, Investigative ophthalmology & visual science.

[96]  S. Schreiber,et al.  Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. , 1997, Current opinion in chemical biology.

[97]  C. Curcio,et al.  Photoreceptor loss in age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.

[98]  Michael E. Greenberg,et al.  Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis , 1995, Science.

[99]  K Y Hui,et al.  A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). , 1994, The Journal of biological chemistry.

[100]  M. Lavail,et al.  Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Bert Sakmann,et al.  Scotopic and mesopic light adaptation in the cat's retina , 1969, Pflügers Archiv.

[102]  M. Samardzija,et al.  HDAC Inhibition Prevents Primary Cone Degeneration Even After the Onset of Degeneration. , 2019, Advances in experimental medicine and biology.

[103]  M. Ueffing,et al.  Primary Rod and Cone Degeneration Is Prevented by HDAC Inhibition. , 2018, Advances in experimental medicine and biology.

[104]  S. Tsang,et al.  Success of Gene Therapy in Late-Stage Treatment. , 2018, Advances in experimental medicine and biology.

[105]  G. Perea,et al.  A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer’s Disease Mice , 2017, Neuropsychopharmacology.

[106]  Atul Kumar,et al.  Efficacy of oral valproic acid in patients with retinitis pigmentosa. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[107]  Soichi Watanabe,et al.  ICNIRP Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000 μm. , 2013, Health physics.

[108]  T. Katome,et al.  Diagnostic imaging in patients with retinitis pigmentosa. , 2012, The journal of medical investigation : JMI.

[109]  C. Cepko,et al.  Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa , 2009, Nature Neuroscience.

[110]  E. Olson,et al.  The many roles of histone deacetylases in development and physiology: implications for disease and therapy , 2009, Nature Reviews Genetics.

[111]  Z. Marinova,et al.  The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons , 2009, Molecular Psychiatry.

[112]  A. Meijer,et al.  The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. , 1997, European journal of biochemistry.

[113]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[114]  Joaquín Dopazo,et al.  Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data , 2010, Bioinform..