Numerical investigations of shock waves in gas-particle mixtures

Abstract.The propagation of shock waves in gas-particle mixtures in one- and two-dimensional geometries is numerically investigated. Two schemes for approximating conservation laws for particles, which are collectively treated as a continuum medium, are compared and discussed. Different models of the drag coefficient and Nusselt number, directly affecting the interaction between the gas and particle phases, are used for obtaining shock profiles, and the results are compared. The oblique shock reflections at a solid wedge in a gas-particle mixture are simulated. The results demonstrate that the reflection pattern changes as the shock propagates along the wedge, revealing strong non-selfsimilarity of the phenomenon.

[1]  J. Nicholls,et al.  Shock wave ignition of magnesium powders , 1978 .

[2]  G. Rudinger,et al.  Some effects of finite particle volume on the dynamics of gas-particle mixtures , 1965 .

[3]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[4]  O. Igra,et al.  Shock tube study of the drag coefficient of a sphere in a non-stationary flow , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  Richard Saurel,et al.  Two-phase flows: Second-order schemes and boundary conditions , 1994 .

[6]  L. F. Henderson,et al.  The persistence of regular reflection during strong shock diffraction over rigid ramps , 2001, Journal of Fluid Mechanics.

[7]  Lionel Sainsaulieu,et al.  Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver , 1995 .

[8]  I. I. Glass,et al.  On a dusty-gas shock tube , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  G. Rudinger Some Properties of Shock Relaxation in Gas Flows Carrying Small Particles , 1963 .

[10]  Gabi Ben-Dor,et al.  Shock Wave Reflections in Dust-Gas Suspensions , 2001 .

[11]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[12]  J. Estivalezes,et al.  Shock tube spherical particle accelerating study for drag coefficient determination , 2003 .

[13]  A. Kriebel Analysis of Normal Shock Waves in Particle Laden Gas , 1964 .

[14]  I. I. Glass,et al.  Shock-wave reflection from a rigid wall in a dusty gas , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  E. Daniel,et al.  On high‐resolution schemes for solving unsteady compressible two‐phase dilute viscous flows , 1999 .

[16]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[17]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[18]  Gabi Ben-Dor,et al.  Dusty Shock Waves , 1988 .

[19]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[20]  Keun-Shik Chang,et al.  Reflection of shock wave from a compression corner in a particle-laden gas region , 1991 .

[21]  S. L. Soo,et al.  Fluid dynamics of multiphase systems , 1967 .

[22]  G. Carrier Shock waves in a dusty gas , 1958, Journal of Fluid Mechanics.

[23]  M. Gilbert Velocity Lag of Particles in Linearly Accelerated Combustion Gases , 1955 .

[24]  Eleuterio F. Toro,et al.  A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  G. Vliet,et al.  Forced Convection Heat Transfer From an Isothermal Sphere to Water , 1961 .

[26]  M. Nettleton Shock-wave chemistry in dusty gases and fogs: A review , 1977 .

[27]  J. Young,et al.  The calculation of inertial particle transport in dilute gas-particle flows , 2001 .

[28]  C. B. Henderson,et al.  Drag Coefficients of Spheres in Continuum and Rarefied Flows , 1976 .

[29]  George Rudinger,et al.  Effective Drag Coefficient for Gas-Particle Flow in Shock Tubes , 1970 .