Multi-technology Platforms (MTPs)

The growing demand for individualized commodities requires new solutions for a highly flexible yet cost-efficient production. Hence, the research results described in this chapter address the question of how different manufacturing technologies could be combined and employed efficiently in industrial practice. Reaching across the whole field of Multi-Technology Platforms (MTPs) a generalized design methodology was examined. The resulting template-based procedure, combining function structure and technology chains, is introduced in the first section. Consecutively, the next section advances this approach by illustrating the incorporation of metrology into machine tools and MTPs. For technological validation, all newly-developed scientific approaches were successfully integrated into four demonstrator test beds located at the RWTH Aachen University: a Multi-Technology Machining Center, a Hybrid Sheet Metal Processing Center, a Conductive Friction Stir Welding Center and a laser-enhanced hybrid lathe. The economic efficiency of manufacturing technology integration is reviewed before a profitability assessment based on the aforementioned demonstrator test beds is performed. The chapter concludes with an outlook on future research topics.

[1]  Hugh Shercliff,et al.  Heat flow into friction stir welding tools , 2003 .

[2]  Jan Erik Heller,et al.  IMPROVED APPLICATION OF DESIGN METHODOLOGY: TAKING MAN-INDUCED DISTURBANCES INTO ACCOUNT , 2012 .

[3]  John Janeczko,et al.  Laser vector measurement technique for the determination and compensation of volumetric position errors. Part II: Experimental verification , 2000 .

[4]  Frank Vollertsen,et al.  State of the art of Laser Hardening and Cladding , 2005 .

[5]  Behzad Jalizi,et al.  Alleskönner oder Teamplayer? Mehrtechnologiemaschinen versus Mehrmaschinenkonzepte , 2009 .

[6]  Wolfgang Bleck,et al.  Deformation Mechanisms of Ti6Al4V Sheet Material during the Incremental Sheet Forming with Laser Heating , 2013 .

[7]  Markus Bambach,et al.  Improving geometrical accuracy for flanging by incremental sheet metal forming , 2015 .

[8]  Paulo A.F. Martins,et al.  Joining sheet panels to thin-walled tubular profiles by tube end forming , 2011 .

[9]  László Monostori,et al.  Complexity in engineering design and manufacturing , 2012 .

[10]  Ye Sheng-hua Large-scale coordinates measurement method based on intersection of optical planes , 2010 .

[11]  Babak Taleb-Araghi,et al.  Inkrementelle Blechumformung und ihre Kombination mit Streckziehen : Grundlagen und Anwendungen , 2012 .

[12]  Klaus Weinert,et al.  Flexible Hartbearbeitung von Futterteilen , 2001 .

[13]  Manabu Tanaka,et al.  Hybrid Friction Stir Welding of Carbon Steel , 2008 .

[14]  Charles Wang Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: Basic theory , 2000 .

[15]  Markus Schmieder,et al.  Cladding Freeform Surfaces with Curved Metal Panels - a Complete Digital Production Chain , 2012, AAG.

[16]  Christian Brecher,et al.  Efficient utilization of production resources in the use phase of multi-technology machine tools , 2013, Prod. Eng..

[17]  Peter Nyhuis,et al.  Changeable Manufacturing - Classification, Design and Operation , 2007 .

[18]  Berend Denkena,et al.  Advancing Cutting Technology , 2003 .

[19]  Uwe Heisel,et al.  Thermal Behaviour of Industrial Robots and Possibilities for Error Compensation , 1997 .

[20]  T. Moriwaki,et al.  Multi-functional machine tool , 2008 .

[21]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[22]  Vladimir Hubka Theorie der Maschinensysteme , 1973 .

[23]  Giuseppina Ambrogio,et al.  Enhancing Incremental Sheet Forming Performance Using High Speed , 2011 .

[24]  Georg Bergweiler,et al.  Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts , 2011, Prod. Eng..

[25]  Ghang Lee,et al.  Case Study of Mass Customization of Double-Curved Metal Façade Panels Using a New Hybrid Sheet Metal Processing Technique , 2012 .

[26]  Christian Brecher,et al.  Thermal issues in machine tools , 2012 .

[27]  Eberhard Abele,et al.  Measuring Flexibility in Investment Decisions for Manufacturing Systems , 2006 .

[28]  Paulo A.F. Martins,et al.  Fracture in hole-flanging produced by single point incremental forming , 2014 .

[29]  Jörg Feldhusen,et al.  Enhanced Function Structure Applicability through Adaptive Function Templates , 2014 .

[30]  S. Jeschke,et al.  Integrative Production Technology for High-wage Countries , 2012 .

[31]  Alexandre M. Tartakovsky,et al.  Modeling of Friction Stir Welding (FSW) process with Smooth Particle Hydrodynamics (SPH) , 2006 .

[32]  Fusahito Yoshida,et al.  Incremental Forming with Local Heating by Laser Irradiation for Magnesium Alloy Sheet , 2014 .

[33]  Marion Merklein,et al.  A review on tailored blanks—Production, applications and evaluation , 2014 .

[34]  Joost Duflou,et al.  Customised medical implant production by means of single point incremental forming , 2005 .

[35]  R. Nandan,et al.  Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding , 2006 .

[36]  Yoram Koren,et al.  The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems , 2010 .

[37]  Yoram Koren,et al.  Design of reconfigurable manufacturing systems , 2010 .

[38]  Michael K.H. Leung,et al.  Theoretical and experimental studies on laser transformation hardening of steel by customized beam , 2007 .

[39]  Johan Verbert,et al.  Laser Assisted Incremental Forming: Formability and Accuracy Improvement , 2007 .

[40]  Kamlakar P Rajurkar,et al.  New Developments in Electro-Chemical Machining , 1999 .

[41]  Wolfgang Knapp,et al.  Measurement Uncertainty and Machine Tool Testing , 2002 .

[42]  Mokhtar Awang,et al.  Simulation of friction stir spot welding (FSSW) process: Study of friction phenomena , 2007 .

[43]  Rudolf Koller,et al.  Prinziplösungen zur Konstruktion technischer Produkte , 1994 .

[44]  Markus Bambach,et al.  Influence of the Process Temperature on the Properties of Friction Stir Welded Blanks Made of Mild Steel and Aluminum , 2014 .

[45]  Giuseppina Ambrogio,et al.  On the high-speed Single Point Incremental Forming of titanium alloys , 2013 .

[46]  Jörg Feldhusen,et al.  Pahl/Beitz Konstruktionslehre , 2003 .

[47]  R Kovacevic,et al.  Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel , 2004 .

[48]  R. Poprawe,et al.  High power diode lasers : technology and applications , 2007 .

[49]  Robert Schmitt,et al.  Geometric error measurement and compensation of machines : an update , 2008 .

[50]  Wolf G. Rodenacker Methodisches Konstruieren : Grundlagen, Methodik, praktische Beispiele , 1984 .

[51]  Yuh J. Chao,et al.  Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies , 2003 .

[52]  Sounak Kumar Choudhury,et al.  Investigation of orthogonal turn-milling for the machining of rotationally symmetrical work pieces , 2000 .

[53]  Gerhard Hirt,et al.  Hybrid Sheet Metal Processing Center , 2015 .

[54]  Ahmed Azab,et al.  Modelling evolution in manufacturing: A biological analogy , 2008 .

[55]  A. T. Male,et al.  A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation , 1964 .

[56]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[57]  Yoram Koren,et al.  Impact of Manufacturing System Configuration on Performance , 1998 .

[58]  Knut Partes,et al.  Analytical model of the catchment efficiency in high speed laser cladding , 2009 .

[59]  Paulo A.F. Martins,et al.  Joining Sheets to Tubular Profiles by Tube Forming , 2012 .

[60]  Markus Bambach,et al.  Forming strategies and Process Modelling for CNC Incremental Sheet Forming , 2004 .

[61]  Fabrizio Micari,et al.  Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends , 2007 .

[62]  Udo Lindemann,et al.  Kostengünstig Entwickeln und Konstruieren , 1998 .

[63]  J. Allwood,et al.  Incremental Forming of Sandwich Panels , 2007 .

[64]  Carlos Soriano,et al.  Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades , 2011 .

[65]  Aydin Nassehi,et al.  A review of hybrid manufacturing processes – state of the art and future perspectives , 2013, Int. J. Comput. Integr. Manuf..

[66]  Christian Brecher,et al.  Multi-Technology Platform for Hybrid Metal Processing , 2008 .

[67]  Ralf Herkrath,et al.  Untersuchungen zur Herstellbarkeit von frei geformten Hüll- und Fassadenelementen als selbsttragende Struktur ohne Unterkonstruktion aus nichtrostendem Stahl mittels inkrementeller Blechumformung (IBU) , 2014 .

[68]  Joost R. Duflou,et al.  Improved SPIF performance through dynamic local heating , 2008 .

[69]  Guijun Bi,et al.  Restoration of Nickel-Base Turbine Blade Knife-Edges with Controlled Laser Aided Additive Manufacturing , 2011 .

[70]  Georg Bergweiler,et al.  A novel approach for temperature control in ISF supported by laser and resistance heating , 2013 .

[71]  Martin Trautz,et al.  Flexible Manufacturing of Double-Curved Sheet Metal Panels for the Realization of Self-Supporting Freeform Structures , 2015 .

[72]  H. Schmidt,et al.  A local model for the thermomechanical conditions in friction stir welding , 2004 .

[73]  Giuseppe Ingarao,et al.  Analysis of Energy Efficiency of Different Setups Able to Perform Single Point Incremental Forming (SPIF) Processes , 2014 .

[74]  Paolo Grattoni,et al.  A Portable Stereovision System for Cultural Heritage Monitoring , 2005 .

[75]  Peter Blau,et al.  Friction science and technology , 1995 .

[76]  Udo Lindemann,et al.  Konzeptentwicklung und Gestaltung technischer Produkte , 2008 .

[77]  Jian Huang,et al.  Study on the softening in overlapping zone by laser-overlapping scanning surface hardening for carbon and alloyed steel , 2010 .

[78]  Christian Brecher,et al.  QUALIFYING LASER-INTEGRATED MACHINE TOOLS WITH MULTIPLE WORKSPACE FOR MACHINING PRECISION , 2013 .

[79]  M. Sh. Levin Composite Systems Decisions , 2006 .

[80]  Mark A.V. Chapman Limitations of laser diagonal measurements , 2003 .

[81]  Robert Schmitt,et al.  Traceable Measurements on Machine Tools - Thermal Influences on Machine Tool Structure and Measurement Uncertainty☆ , 2015 .

[82]  Paf Martins,et al.  On the relative performance of hole-flanging by incremental sheet forming and conventional press-working , 2014 .

[83]  M Pogacnik,et al.  Dynamic stabilization of the turn-milling process by parameter optimization , 2000 .

[84]  Karl Kuzman,et al.  Backward Hole-Flanging Technology Using an Incremental Approach , 2012 .

[85]  Markus Bambach,et al.  Properties of Friction Stir Welded Blanks Made from DC04 Mild Steel and Aluminum AA6016 , 2013 .

[86]  Uwe Reisgen,et al.  Feasibility Study on the use of Adhesive Fixation in Conjunction with Friction Stir Welding , 2014 .

[87]  A. Kostka,et al.  Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure , 2012 .

[88]  Reinhart Poprawe,et al.  Identification and qualification of temperature signal for monitoring and control in laser cladding , 2006 .

[89]  Radovan Kovacevic,et al.  Thermal modeling of friction stir welding in a moving coordinate system and its validation , 2003 .

[90]  Pramod Kumar Jain,et al.  A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system , 2013 .

[91]  Peter Smid CNC programming handbook : a comprehensive guide to practical CNC programming , 2008 .

[92]  Haydar Livatyali,et al.  Experimental investigation on forming defects in flat surface–convex edge hemming: roll, recoil and warp , 2004 .

[93]  H. ElMaraghy Enabling Manufacturing Competitiveness and Economic Sustainability , 2012 .

[94]  Markus Bambach,et al.  Manufacturing of Individualized Cranial Implants Using Two Point Incremental Sheet Metal Forming , 2013 .

[95]  Joost Duflou,et al.  Negative Bulge Formation in High Speed Incremental Forming , 2015 .

[96]  Christian Brecher,et al.  Flexible scanner-based laser surface treatment , 2010 .

[97]  P. H. Shipway,et al.  The effect of temperature on wear and friction of a high strength steel in fretting , 2013 .

[98]  Rui Vilar,et al.  Laser Alloying and Laser Cladding , 1999 .

[99]  Sridhar Kota,et al.  Generalized kinematic modeling of Reconfigurable Machine Tools , 2002 .

[100]  Joost Duflou,et al.  Asymmetric single point incremental forming of sheet metal , 2005 .

[101]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .

[102]  Ming Zhe Li,et al.  Study of Multi-Point Flexible Floating Clamping System of Multi-Roll Stretch Forming Process , 2011 .

[103]  Hoda A. ElMaraghy,et al.  Reconfigurable Process Plans For Responsive Manufacturing Systems , 2007 .

[104]  Taylan Altan,et al.  Sheet metal forming at elevated temperatures , 2006 .

[105]  Fritz Klocke,et al.  Economic Efficiency of Manufacturing Technology Integration , 2014 .

[106]  Lawrence E Murr,et al.  Heat input and temperature distribution in friction stir welding , 1998 .

[107]  Florian Garnich Laserbearbeitung mit Robotern , 1992 .

[108]  Markus Bambach,et al.  A New Process Design for Performing Hole-flanging Operations by Incremental Sheet Forming , 2014 .

[109]  Derek Yip-Hoi,et al.  Design Principles for Machining System Configurations , 2002 .

[110]  Christian Aste,et al.  Café 3440 am Pitztaler Gletscher – Wildspitzbahn, Österreich , 2013 .

[111]  Markus Bambach,et al.  Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming , 2009 .

[112]  Christian Brecher,et al.  Interaction of manufacturing process and machine tool , 2009 .

[113]  Rudolf Koller,et al.  Konstruktionslehre für den Maschinenbau , 1985 .

[114]  K. Heinz,et al.  Montage- und Handhabungstechnik , 1984 .

[115]  Vladimir Hubka Theorie der Maschinensysteme : Grundlagen einer wissenschaftlichen Konstruktionslehre , 1973 .

[116]  Tullio Tolio,et al.  SPECIES—Co-evolution of products, processes and production systems , 2010 .

[117]  H.-P. Wiendahl,et al.  Management and Control of Complexity in Manufacturing , 1994 .

[118]  Berend Denkena,et al.  Process Machine Interactions , 2013 .

[119]  Marlene Spittel,et al.  Steel symbol/number: DC06/1.0873 , 2009 .

[120]  Wolfgang Bunk,et al.  Deformation modes of the α-phase of ti-6al-4v as a function of oxygen concentration and aging temperature , 1982 .

[121]  Seung-Boo Jung,et al.  Hybrid Friction Stir Welding of High-carbon Steel , 2011 .

[122]  Masaaki Amino,et al.  Current Status of “Dieless” Amino's Incremental Forming , 2014 .