In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes.

A [2]pseudorotaxane, based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis(paraquat-p-phenylene) and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites, has been self-assembled. This supramolecular entity is a mixture in solution of two slowly interconverting [2]pseudorotaxanes, one of which is on the verge of being a [2]rotaxane at room temperature, allowing it to be isolated by employing flash column chromatography. These two [2]pseudorotaxanes were both characterized in solution by UV/Vis and (1)H NMR spectroscopies (1D and 2D) and also by differential pulse voltammetry. The spectroscopic and electrochemical data reveal that one of the complexes behaves wholly as a [2]pseudorotaxane, while the other has some [2]rotaxane character to it. The kinetics of the shuttling of cyclobis(paraquat-p-phenylene) between the monopyrrolotetrathiafulvalene and the 1,5-dioxynaphthalene recognition sites have been investigated at different temperatures. The shuttling processes, which are accompanied by detectable color changes, can be monitored using UV/Vis and (1)H NMR spectroscopies; the spectroscopic data have been employed in the determination of the rate constants, free energies of activation, enthalpies of activation, and the entropies of activation for the translation of cyclobis(paraquat-p-phenylene) between the two recognition sites.

[1]  A. Kaifer,et al.  Switchable Molecular Devices: From Rotaxanes to Nanoparticles , 2001 .

[2]  Masahiro Higuchi,et al.  Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .

[3]  David J. Williams,et al.  Molecular Meccano. 4. The Self-Assembly of [2]Catenanes Incorporating Photoactive .pi.-Extended Systems , 1995 .

[4]  David J. Williams,et al.  Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene , 1999 .

[5]  Stoddart,et al.  Self-assembly of an amphiphilic , 2000, Organic letters.

[6]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[7]  Auke Meetsma,et al.  Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. , 2002, Journal of the American Chemical Society.

[8]  J. Fraser Stoddart,et al.  Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .

[9]  J. Fraser Stoddart,et al.  Simple molecular-level machines. Interchange between different threads in pseudorotaxanes , 1998 .

[10]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[11]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[12]  Fritz Vögtle,et al.  High-Yielding Rotaxane Synthesis with an Anion Template. , 1999, Angewandte Chemie.

[13]  Harry L. Anderson,et al.  Rotaxane-encapsulated cyanine dyes: enhanced fluorescence efficiency and photostability , 2000 .

[14]  T. Ross Kelly,et al.  Rotary Motion in Single-Molecule Machines , 2001 .

[15]  Jan Becher,et al.  Poised on the brink between a bistable complex and a compound. , 2002, Organic letters.

[16]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[17]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[18]  V. Rotello,et al.  From Enzyme to Molecular Device. Exploring the Interdependence of Redox and Molecular Recognition , 1999 .

[19]  Interplay between Molecular Recognition and Redox Chemistry , 1999 .

[20]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[21]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[22]  J. Fraser Stoddart,et al.  Amphiphilic Bistable Rotaxanes , 2003 .

[23]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[24]  M. Walsh,et al.  Axially coordinated porphyrins as new rotaxanestoppers , 2000 .

[25]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[26]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[27]  D. Busch,et al.  MOLECULAR RIVETING : HIGH YIELD PREPARATION OF A 3-ROTAXANE , 1998 .

[28]  J. Fraser Stoddart,et al.  Rotaxane or Pseudorotaxane? That Is the Question!† , 1998 .

[29]  Stoddart,et al.  The influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes , 2000, Chemistry.

[30]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[31]  Laurence Raehm,et al.  A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell , 1999 .

[32]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[33]  Maurizio Licchelli,et al.  Transition Metals as Switches , 1999 .

[34]  J. Fraser Stoddart,et al.  Computing at the Molecular Level , 2001 .

[35]  James A. Wisner,et al.  [3]Rotaxanes employing multiple 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers , 2000 .

[36]  Laurence Raehm,et al.  Molecular Machines and Motors Based on Transition Metal-Containing Catenanes and Rotaxanes , 2001 .

[37]  M Venturi,et al.  Artificial molecular-level machines: which energy to make them work? , 2001, Accounts of chemical research.

[38]  J. F. Stoddart,et al.  Slippage and Constrictive Binding , 2005 .

[39]  Fritz Vögtle,et al.  EINE NEUE SYNTHESESTRATEGIE FUR MOLEKULE MIT MECHANISCHEN BINDUNGEN : NICHTIONISCHE TEMPLATSYNTHESE AMIDVERKNUPFTER CATENANE UND ROTAXANE , 1997 .

[40]  H. Anderson,et al.  An approach to insulated molecular wires: synthesis of water-soluble conjugated rotaxanes , 1998 .

[41]  David J. Williams,et al.  IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .

[42]  David J. Williams,et al.  Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .

[43]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[44]  F. Vögtle,et al.  Synthesis of Rotaxanes by Brief Melting of Wheel and Axle Components , 1997 .

[45]  I. Harrison The effect of ring size on threading reactions of macrocycles , 1972 .

[46]  A. L. V. Geet Calibration of methanol nuclear magnetic resonance thermometer at low temperature , 1970 .

[47]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[48]  Mitch Jacoby,et al.  NANOSCALE ELECTRONICS: Bustling research is producing sophisticated laboratory demonstrations, but commercialization of nanometer-sized devices remains a ways off , 2002 .

[49]  David J. Williams,et al.  A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. , 1998, Angewandte Chemie.

[50]  J. F. Stoddart,et al.  Reversing a rotaxane recognition motif: threading oligoethylene glycol derivatives through a dicationic cyclophane. , 2002, Journal of the American Chemical Society.

[51]  Christian Seel,et al.  Hocheffiziente Synthese von Rotaxanen mit einem anionischen Templat , 1999 .

[52]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[53]  David J. Williams,et al.  Toward Controllable Molecular Shuttles , 1997 .

[54]  C. Schalley,et al.  Rotaxane or Pseudorotaxane? Effects of Small Structural Variations on the Deslipping Kinetics of Rotaxanes with Stopper Groups of Intermediate Size , 2001 .

[55]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[56]  J F Stoddart,et al.  Molecular-based electronically switchable tunnel junction devices. , 2001, Journal of the American Chemical Society.

[57]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[58]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[59]  Erik H. Anderson,et al.  Nanoscale molecular-switch devices fabricated by imprint lithography , 2003 .

[60]  J. F. Stoddart,et al.  Triphenylphosphonium-Stoppered [2]Rotaxanes , 1999 .

[61]  J. F. Stoddart,et al.  The Mechanism of the Slippage Approach to Rotaxanes. Origin of the “All-or-Nothing” Substituent Effect† , 1998 .

[62]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[63]  David J. Williams,et al.  Self‐assembling [2]‐ and [3]Rotaxanes from Secondary Dialkylammonium Salts and Crown Ethers , 1996 .

[64]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[65]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[66]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[67]  D. Macartney,et al.  Kinetic and Spectroscopic Studies on α-Cyclodextrin Rotaxanes with Pentacyano(cyanopyridinium)ferrate(II) Stoppers , 1997 .

[68]  J. Fraser Stoddart,et al.  Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit , 2001 .

[69]  J. F. Stoddart,et al.  The Slipping Approach to Self-Assembling [n]Rotaxanes† , 1997 .

[70]  Christian Joachim,et al.  Single Molecular Rotor at the Nanoscale , 2001 .

[71]  Carlo Mangano,et al.  Molecular Movements and Translocations Controlled by Transition Metals and Signaled by Light Emission , 2001 .

[72]  D. H. Busch,et al.  Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis , 1995 .

[73]  Vincenzo Balzani,et al.  Molecular-Level Artificial Machines Based on Photoinduced Electron-Transfer Processes , 2001 .

[74]  Itamar Willner,et al.  Molecular Memory and Processing Devices in Solution and on Surfaces , 2001 .

[75]  David J. Williams,et al.  Ein molekulares Chamäleon: ein selbstkomplexierendes molekulares Aggregat als chromophorer Sensor , 1998 .

[76]  David J. Williams,et al.  Post-assembly processing of [2]rotaxanes. , 2002, Chemistry.

[77]  Seel,et al.  Templates, "wheeled reagents", and a new route to rotaxanes by anion complexation: the trapping method , 2000, Chemistry.

[78]  David J. Williams,et al.  The complexation of tetrathiafulvalene by cyclobis(Paraquat-p-phenylene) , 1991 .

[79]  David J. Williams,et al.  Photoactive Azobenzene‐Containing Supramolecular Complexes and Related Interlocked Molecular Compounds , 1999 .

[80]  J. F. Stoddart,et al.  Slippage—an alternative method for assembling [2]rotaxanes , 1993 .

[81]  C. Dietrich-Buchecker,et al.  Multicomponent Molecular Systems Incorporating Porphyrins and Copper(I) Complexes: Simultaneous Synthesis of [3]‐ and [5]Rotaxanes , 1996 .

[82]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[83]  J. Sauvage,et al.  Mehrkomponenten-Molekülsysteme aus Porphyrinen und Kupfer(I)-Komplexen: simultane Synthese von [3]- und [5]Rotaxanen† , 1996 .

[84]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[85]  D. Powell,et al.  Intermolecular Electron-Transfer Reactions Involving Hydrazines , 1996 .

[86]  F. Vögtle,et al.  Rotaxansynthese durch kurzes Zusammenschmelzen von Rad und Achse , 1997 .

[87]  Adele Dell'Erba,et al.  Anthracene-Containing [2]Rotaxanes: Synthesis, Spectroscopic, and Electrochemical Properties , 2000 .

[88]  T R Kelly,et al.  Progress toward a rationally designed molecular motor. , 2001, Accounts of chemical research.

[89]  J. F. Stoddart,et al.  A rotaxane-like complex with controlled-release characteristics. , 2000, Organic letters.

[90]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[91]  M. Sano Molecular Hysteresis by Linkage Isomerizations Induced by Electrochemical Processes , 2001 .

[92]  Richard A. Silva,et al.  A Rationally Designed Prototype of a Molecular Motor. , 2000, Journal of the American Chemical Society.

[93]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[94]  A. Rowan,et al.  Novel porphyrin–viologen rotaxanes , 1998 .

[95]  Fritz Vögtle,et al.  A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .

[96]  Hans Fritz,et al.  Untersuchungen zur statistischen Synthese von Rotaxanen , 1986 .

[97]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[98]  J. Fraser Stoddart,et al.  Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system , 2001 .

[99]  C. Schalley,et al.  On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. , 2001, Accounts of chemical research.

[100]  J. F. Stoddart,et al.  Binding studies between tetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene). , 2001, The Journal of organic chemistry.

[101]  P. Beer,et al.  Anion-templated rotaxane formation. , 2002, Journal of the American Chemical Society.

[102]  H. Gibson,et al.  Polyrotaxanes: Molecular composites derived by physical linkage of cyclic and linear species , 1993 .

[103]  J. Fraser Stoddart,et al.  Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions , 2000 .

[104]  Leonid M. Goldenberg,et al.  A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .

[105]  James A. Wisner,et al.  1,2-Bis(4,4′-dipyridinium)ethane: a versatile dication for the formation of [2]rotaxanes with dibenzo-24-crown-8 ether , 1998 .

[106]  J. Fraser Stoddart,et al.  The art and science of self-assembling molecular machines , 1996 .