Good sequential probability forecasting is always possible
暂无分享,去创建一个
[1] Vladimir Vovk,et al. The game-theoretic capital asset pricing model , 2008, Int. J. Approx. Reason..
[2] Per Martin-Löf,et al. The Literature on von Mises' Kollektivs Revisited , 2008 .
[3] Vladimir Vovk,et al. Leading strategies in competitive on-line prediction , 2006, Theor. Comput. Sci..
[4] Vladimir Vovk,et al. Continuous and randomized defensive forecasting: unified view , 2007, ArXiv.
[5] Vladimir Vovk,et al. Defensive forecasting for optimal prediction with expert advice , 2007, ArXiv.
[6] Peter,et al. Game-theoretic probability and its uses , especially defensive forecasting , 2007 .
[7] G. Shafer,et al. The Sources of Kolmogorov’s Grundbegriffe , 2006, math/0606533.
[8] Vladimir Vovk,et al. On-Line Regression Competitive with Reproducing Kernel Hilbert Spaces , 2005, TAMC.
[9] G. Shafer,et al. Good randomized sequential probability forecasting is always possible , 2005 .
[10] Vladimir Vovk. Competitive on-line learning with a convex loss function , 2005, ArXiv.
[11] Akimichi Takemura,et al. Defensive Forecasting for Linear Protocols , 2005, ALT.
[12] Vladimir Vovk,et al. Non-asymptotic calibration and resolution , 2005, Theor. Comput. Sci..
[13] Akimichi Takemura,et al. Defensive Forecasting , 2005, AISTATS.
[14] Sham M. Kakade,et al. Deterministic calibration and Nash equilibrium , 2004, J. Comput. Syst. Sci..
[15] Alvaro Sandroni,et al. The reproducible properties of correct forecasts , 2003, Int. J. Game Theory.
[16] Richard B. Scherl,et al. A new understanding of subjective probability and its generalization to lower and upper prevision , 2003, Int. J. Approx. Reason..
[17] Alvaro Sandroni,et al. Calibration with Many Checking Rules , 2003, Math. Oper. Res..
[18] Vladimir Vovk,et al. A Game-Theoretic Explanation of the √(dt) Effect , 2003 .
[19] Vladimir Vovk,et al. Kolmogorov's Contributions to the Foundations of Probability , 2003, Probl. Inf. Transm..
[20] Vladimir Vovk,et al. Game-Theoretic Capital Asset Pricing in Continuous Time , 2001 .
[21] E. Lehrer. Any Inspection is Manipulable , 2001 .
[22] G. Shafer,et al. Probability and Finance: It's Only a Game! , 2001 .
[23] D. Fudenberg,et al. An Easier Way to Calibrate , 1999 .
[24] David Oakes,et al. Self-Calibrating Priors Do Not Exist , 1985 .
[25] A. Kolmogorov. On Logical Foundations of Probability Theory , 1983 .
[26] Yu. A. Gur'yan,et al. Parts I and II , 1982 .
[27] R Š Lipcer,et al. ON THE QUESTION OF ABSOLUTE CONTINUITY AND SINGULARITY OF PROBABILITY MEASURES , 1977 .
[28] Claus-Peter Schnorr,et al. Zufälligkeit und Wahrscheinlichkeit - Eine algorithmische Begründung der Wahrscheinlichkeitstheorie , 1971, Lecture Notes in Mathematics.
[29] Claus Peter Schnorr. über die Definition von effektiven Zufallstests , 1970 .
[30] Andrei N. Kolmogorov,et al. Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.
[31] J. Curtiss. An Elementary Mathematical Model for the Interpretation of Precipitation Probability Forecasts , 1968 .
[32] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[33] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[34] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[35] D. Blackwell,et al. Merging of Opinions with Increasing Information , 1962 .
[36] A. N. Kolmogorov,et al. Foundations of the theory of probability , 1960 .
[37] Karl R. Popper,et al. Degree of Confirmation , 1954 .
[38] J. Doob. Stochastic processes , 1953 .
[39] G. Brier. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .
[40] A. Church. On the concept of a random sequence , 1940 .
[41] Jean-Luc Ville. Étude critique de la notion de collectif , 1939 .
[42] A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .
[43] A. Kolmogoroff. Über das Gesetz des iterierten Logarithmus , 1929 .
[44] R. Mises. Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .