Similarities between visual processing of shear and uniform motion

[1]  Qasim Zaidi,et al.  Motion energy versus position tracking: spatial, temporal and chromatic parameters , 2000, Vision Research.

[2]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: disparity sensitivity. , 1999, Journal of neurophysiology.

[3]  John Krauskopf,et al.  Effect of contrast on detection of motion of chromatic and luminance targets: retina-relative and object-relative movement , 1999, Vision Research.

[4]  P. Cavanagh,et al.  Position displacement, not velocity, is the cue to motion detection of second-order stimuli , 1998, Vision Research.

[5]  P. Atchley,et al.  Cooperativity, priming, and 3-D surface detection from optic flow , 1998, Perception & psychophysics.

[6]  H. Wilson,et al.  Motion Integration over Space: Interaction of the Center and Surround Motion* * This research was first reported at the Annual Meeting of the Association for Research in Vision and Ophthalmology, May 1994 and 1995. , 1997, Vision Research.

[7]  S. Shimojo,et al.  Assimilation-type and Contrast-type Bias of Motion Induced by the Surround in a Random-dot Display: Evidence for Center-Surround Antagonism , 1996, Vision Research.

[8]  P Møller,et al.  Psychophysical evidence for fast region-based segmentation processes in motion and color. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[10]  Tim S. Meese,et al.  Speed gradients and the perception of surface slant: Analysis is two-dimensional not one-dimensional , 1995, Vision Research.

[11]  Qasim Zaidi,et al.  Visual processing of motion boundaries , 1995, Vision Research.

[12]  R. Snowden Sensitivity to Relative and Absolute Motion , 1992, Perception.

[13]  J. Koenderink,et al.  Second-order optic flow , 1992 .

[14]  A. Verri,et al.  First-order analysis of optical flow in monkey brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[16]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  A. Reinhardt-Rutland,et al.  Induced movement in the visual modality: an overview. , 1988, Psychological bulletin.

[18]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[20]  Dennis M. Levi,et al.  Spatial and velocity tuning of processes underlying induced motion , 1984, Vision Research.

[21]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[22]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[23]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[25]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[26]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[27]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[28]  Vision Research , 1961, Nature.