EXPERIMENTAL IMPROVEMENT OF CHAOTIC SYNCHRONIZATION DUE TO MULTIPLICATIVE TIME-CORRELATED GAUSSIAN NOISE

The effect of time-correlated zero-mean Gaussian noise on chaotic synchronization is analyzed experimentally in small-size arrays of Chua's circuits. Depending on the correlation time, an improvement of the synchronization is found for different values of the noise amplitude and coupling diffusion between circuits.

[1]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[2]  W. Ditto,et al.  Taming spatiotemporal chaos with disorder , 1995, Nature.

[3]  Vicente Pérez-Muñuzuri,et al.  ANALYSIS OF SYNCHRONIZATION OF CHAOTIC SYSTEMS BY NOISE: AN EXPERIMENTAL STUDY , 1997 .

[4]  Malescio Noise and synchronization in chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[6]  Bulsara,et al.  Array enhanced stochastic resonance and spatiotemporal synchronization. , 1995, Physical review letters.

[7]  J. M. Sancho,et al.  Analytical and numerical studies of multiplicative noise , 1982 .

[8]  Güémez,et al.  Stabilization of chaos by proportional pulses in the system variables. , 1994, Physical review letters.

[9]  V. Pérez-Muñuzuri,et al.  Colored-noise-induced chaotic array synchronization. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Pikovsky Comment on "Chaos, noise, and synchronization" , 1994, Physical review letters.

[11]  Kurt Wiesenfeld,et al.  Disorder-enhanced synchronization , 1995 .

[12]  Y. Klimontovich Relative ordering criteria in open systems , 1996 .

[13]  Vicente Pérez-Muñuzuri,et al.  An experimental setup for studying the effect of noise on Chua's circuit , 1999 .

[14]  Bulsara,et al.  Scaling laws for spatiotemporal synchronization and array enhanced stochastic resonance. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  P. Gade,et al.  The origin of non-chaotic behavior in identically driven systems , 1995, chao-dyn/9505007.

[16]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[17]  Peter V. E. McClintock,et al.  Analogue studies of nonlinear systems , 1998 .

[18]  Maritan,et al.  Chaos, noise, and synchronization. , 1994, Physical review letters.

[19]  Longa,et al.  Roundoff-induced coalescence of chaotic trajectories. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[21]  Frank Moss,et al.  Stochastic Resonance in Ensembles of Nondynamical Elements: The Role of Internal Noise , 1997 .

[22]  K. Wong,et al.  Noise and synchronization in chaotic neural networks , 1998 .

[23]  Güémez,et al.  Chaos suppression in flows using proportional pulses in the system variables. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Freund,et al.  Chaos, noise, and synchronization reconsidered. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.