Model Uncertainty, Robust Optimization and Learning

Classical modelling approaches in OR/MS under uncertainty assume a full probabilis- tic characterization. The learning needed to implement the policies derived from these models is accomplished either through (i) classical statistical estimation procedures or (ii) subjective Bayesian priors. When the data available for learning is limited, or the underlying uncertainty is non-stationary, the error induced by these approaches can be significant and the effectiveness of the policies derived will be reduced. In this tutorial we discuss how we may incorporate these errors in the model (that is, model model uncertainty) and use robust optimization to derive efficient policies. Different models of model uncertainty will be discussed and different approaches to robust opti- mization with and without bench-marking will be presented. Two alternative learning approaches Objective Bayesian Learning and Operational Learning will be discussed. These approaches could be used to calibrate the models of model uncertainty and to calibrate the optimal policies. Throughout this tutorial we will consider the classical inventory control problem, the inventory control problem with censored demand data and the portfolio selection problem as examples to illustrate these ideas.

[1]  T. Sargent,et al.  Acknowledging Misspecification in Macroeconomic Theory , 2001 .

[2]  Alper Atamtürk Strong Formulations of Robust Mixed 0–1 Programming , 2006, Math. Program..

[3]  Katy S. Azoury Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution , 1985 .

[4]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory, Second Edition , 2000, Statistics for Engineering and Information Science.

[5]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[6]  S. Werlang,et al.  Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio , 1992 .

[7]  Evan L. Porteus,et al.  Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales , 1999 .

[8]  Igor Averbakh Minmax regret linear resource allocation problems , 2004, Oper. Res. Lett..

[9]  R. Bhar,et al.  Advances in finance and stochastics : essays in honour of Dieter Sondermann , 2002 .

[10]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[11]  A. Banerjee Convex Analysis and Optimization , 2006 .

[12]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[13]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[14]  Jing-Sheng Song,et al.  On "The Censored Newsvendor and the Optimal Acquisition of Information" , 2005, Oper. Res..

[15]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[16]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[17]  Melvyn Sim,et al.  A Tractable Approximation of Stochastic Programming via Robust Optimization , 2006 .

[18]  Vipul Agrawal,et al.  Impact of Uncertainty and Risk Aversion on Price and Order Quantity in the Newsvendor Problem , 2000, Manuf. Serv. Oper. Manag..

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  Melvyn Sim,et al.  A Robust Optimization Framework for Analyzing Distribution Systems with Transshipment , 2008 .

[21]  Jun Liu,et al.  An Equilibrium Model of Rare Event Premia , 2002 .

[22]  Andrew E. B. Lim,et al.  Relative Entropy, Exponential Utility, and Robust Dynamic Pricing , 2007, Oper. Res..

[23]  J. George Shanthikumar,et al.  Solving operational statistics via a Bayesian analysis , 2008, Oper. Res. Lett..

[24]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[25]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[26]  Andrew E. B. Lim,et al.  Relative performance measures of portfolio robustness , 2005 .

[27]  UniversityJennifer K. RyanSchool Minimax Analysis for Finite Horizon Inventory Models , 2001 .

[28]  Alvaro Sandroni,et al.  Non-Bayesian Updating: a Theoretical Framework , 2005 .

[29]  T. Sargent,et al.  Robust Permanent Income and Pricing , 1999 .

[30]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[31]  Lars Peter Hansen,et al.  A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION , 2003 .

[32]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[33]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[34]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[35]  Stefania D’Amico Density Selection and Combination Under Model Ambiguity: An Application to Stock Returns , 2005 .

[36]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[37]  Martin Schneider,et al.  IID: independently and indistinguishably distributed , 2003, J. Econ. Theory.

[38]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[39]  Lars Peter Hansen,et al.  Robust control of forward-looking models , 2003 .

[40]  Evan L. Porteus Foundations of Stochastic Inventory Theory , 2002 .

[41]  L El Ghaoui,et al.  ROBUST SOLUTIONS TO LEAST-SQUARE PROBLEMS TO UNCERTAIN DATA MATRICES , 1997 .

[42]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[43]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[44]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[45]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[46]  Pierre Bernhard,et al.  Robust Control Approach to Option Pricing, Including Transaction Costs , 2005 .

[47]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[48]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[49]  F. Delbaen Coherent risk measures , 2000 .

[50]  Larry G. Epstein,et al.  Ambiguity, Information Quality and Asset Pricing , 2008 .

[51]  Larry G. Epstein,et al.  Learning Under Ambiguity , 2002 .

[52]  Melvyn Sim,et al.  Tractable Approximations to Robust Conic Optimization Problems , 2006, Math. Program..

[53]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[54]  S. Karlin Dynamic Inventory Policy with Varying Stochastic Demands , 1960 .

[55]  T. Sargent,et al.  ROBUST PERMANENT INCOME AND PRICING WITH FILTERING , 2002, Macroeconomic Dynamics.

[56]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[57]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[58]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[59]  Raman Uppal,et al.  Model Misspecification and Under-Diversification , 2002 .

[60]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[61]  Alexander Shapiro,et al.  Coherent risk measures in inventory problems , 2007, Eur. J. Oper. Res..

[62]  Zheng Li,et al.  A robust control approach to option pricing , 2000 .

[63]  Larry G. Epstein,et al.  A Two-Person Dynamic Equilibrium under Ambiguity , 2003 .

[64]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[65]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[66]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[67]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[68]  Daniel Bienstock,et al.  Computing robust basestock levels , 2008, Discret. Optim..

[69]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[70]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[71]  D. Lindley The foundations of statistics (second edition), by Leonard J. Savage. Pp xv, 310. £1·75. 1972 (Dover/Constable) , 1973 .

[72]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[73]  H. Henry Cao,et al.  Model Uncertainty, Limited Market Participation and Asset Prices , 2003 .

[74]  Lars Peter Hansen,et al.  Robustness and Uncertainty Aversion , 2002 .

[75]  Peng Sun,et al.  Risk Aversion in Inventory Management , 2007, Oper. Res..

[76]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[77]  Larry G. Epstein An Axiomatic Model of Non-Bayesian Updating , 2006 .

[78]  Larry G. Epstein,et al.  Intertemporal Asset Pricing Under Knightian Uncertainty , 1994 .

[79]  J. George Shanthikumar,et al.  A practical inventory control policy using operational statistics , 2005, Oper. Res. Lett..

[80]  Lars Peter Hansen,et al.  Robustness and Pricing with Uncertain Growth , 2002 .

[81]  Peng Sun,et al.  A Robust Optimization Perspective on Stochastic Programming , 2007, Oper. Res..

[82]  H. Scarf Bayes Solutions of the Statistical Inventory Problem , 1959 .

[83]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[84]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..