Computers and Mathematics with Applications on Fractional Impulsive Equations of Sobolev Type with Nonlocal Condition in Banach Spaces

The objective of this paper is to establish the existence of solutions of nonlinear impulsive fractional integrodifferential equations of Sobolev type with nonlocal condition. The results are obtained by using fractional calculus and fixed point techniques.

[1]  L. Byszewski Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem , 1991 .

[2]  K. Balachandran,et al.  NONLINEAR INTEGRODIFFERENTIAL EQUATIONS OF SOBOLEV TYPE WITH NONLOCAL CONDITIONS IN BANACH SPACES , 1999 .

[3]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[4]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[5]  K. Balachandran,et al.  Existence of solutions of nonlinear integrodifferential equations of sobolev type with nonlocal condition in Banach spaces , 2000 .

[6]  Eduardo Hernández,et al.  Existence of solutions for a class of abstract differential equations with nonlocal conditions , 2011 .

[7]  Heinz Brill,et al.  A semilinear Sobolev evolution equation in a Banach space , 1977 .

[8]  Juan J. Trujillo,et al.  Existence results for fractional impulsive integrodifferential equations in Banach spaces , 2011 .

[9]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[10]  Akbar Zada,et al.  Linear impulsive dynamic systems on time scales , 2010 .

[11]  Luigi Rodino,et al.  Existence and Uniqueness for a Nonlinear Fractional Differential Equation , 1996 .

[12]  V. Lakshmikantham,et al.  Theory of Fractional Dynamic Systems , 2009 .

[13]  Guozhu Gao,et al.  On the solution of nonlinear fractional order differential equation , 2005 .

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  J. Nieto,et al.  Existence of Periodic Solution for a Nonlinear Fractional Differential Equation , 2009 .

[16]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[17]  Margarita Rivero,et al.  Fractional differential equations as alternative models to nonlinear differential equations , 2007, Appl. Math. Comput..

[18]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[19]  SOME PROPERTIES OF THE EXTREME VALUES OF INFINITY-HARMONIC FUNCTIONS , 2009 .

[20]  Guozhu Gao,et al.  Existence of fractional differential equations , 2005 .

[21]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[22]  Mouffak Benchohra,et al.  EXISTENCE AND UNIQUENESS OF SOLUTIONS TO IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS , 2009 .

[23]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[24]  Zhiming Wang,et al.  On Step-Like Contrast Structure of Singularly Perturbed Systems , 2009 .

[25]  S. Kiruthika,et al.  EXISTENCE OF SOLUTIONS OF ABSTRACT FRACTIONAL IMPULSIVE SEMILINEAR EVOLUTION EQUATIONS , 2010 .

[26]  Yong Zhou,et al.  Nonlocal Cauchy problem for fractional evolution equations , 2010 .

[27]  J. Trujillo,et al.  The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces , 2010, Nonlinear Analysis: Theory, Methods & Applications.

[28]  Gaston M. N’Guérékata,et al.  On integral solutions of some nonlocal fractional differential equations with nondense domain , 2009 .

[29]  M. Benchohra,et al.  IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES , 2009 .

[30]  J. Nieto,et al.  On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions , 2009 .

[31]  A. Granas,et al.  Fixed Point Theory , 2003 .

[32]  Ralph E. Showalter,et al.  Existence and Representation Theorems for a Semilinear Sobolev Equation in Banach Space , 1972 .