A Dimension Management Framework for High Dimensional Visualization

Visualization is an important approach to analyzing high dimensional datasets, which are common in important applications such as financial analytics, multimedia analysis, and genomic analysis. However, larger numbers of dimensions in high dimensional datasets not only cause visual clutter in the display, but also cause difficult user navigation among dimensions. To overcome these problems, dimension management, such as subspace construction, dimension ordering and spacing, and multivariate relationship examination, needs to be provided in high dimensional visualization systems. In this book chapter, we propose a general framework for dimension management in high dimensional visualization that provides a guideline for the design and development of dimension management functions in high dimensional visualization systems. We then present our recent work on dimension management in high dimensional visualization, namely the Hierarchical Dimension Management approach, the Value and Relation display, and the Multivariate Visual Explanation approach, as examples to illustrate the proposed framework.

[1]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[2]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[3]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[4]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[5]  Jianping Fan,et al.  Multi-level annotation of natural scenes using dominant image components and semantic concepts , 2004, MULTIMEDIA '04.

[6]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[7]  Matthew O. Ward,et al.  InterRing: an interactive tool for visually navigating and manipulating hierarchical structures , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[8]  Martin Wattenberg A note on space-filling visualizations and space-filling curves , 2005 .

[9]  Matthew O. Ward,et al.  Value and Relation Display for Interactive Exploration of High Dimensional Datasets , 2004 .

[10]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[11]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[12]  Yujie Liu,et al.  Multivariate visual explanation for high dimensional datasets , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[13]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[14]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections , 2004 .

[15]  Matthew O. Ward,et al.  Animating multidimensional scaling to visualize N-dimensional data sets , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[16]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[17]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[18]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[19]  Alan M. MacEachren,et al.  Exploring high-D spaces with multiform matrices and small multiples , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[20]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[21]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[22]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[23]  Matthew O. Ward,et al.  Value and Relation Display: Interactive Visual Exploration of Large Data Sets with Hundreds of Dimensions , 2007, IEEE Trans. Vis. Comput. Graph..

[24]  H. P. Friedman,et al.  The surgical implications of physiologic patterns in myocardial infarction shock. , 1972, Surgery.

[25]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[26]  Chris Buckley,et al.  OHSUMED: an interactive retrieval evaluation and new large test collection for research , 1994, SIGIR '94.