TEMPERATURE EFFECT ON ENTRAINMENT, PHASE SHIFTING, AND AMPLITUDE OF CIRCADIAN CLOCKS AND ITS MOLECULAR BASES

Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1–2°C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts—recorded by phase response curves (PRCs)—that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm—when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180° different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2°C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.

[1]  S. Kay,et al.  Molecular bases of circadian rhythms. , 2001, Annual review of cell and developmental biology.

[2]  V. Cassone,et al.  Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei , 1986, Physiology & Behavior.

[3]  Till Roenneberg,et al.  Assignment of circadian function for the Neurospora clock gene frequency , 1999, Nature.

[4]  L. Rensing,et al.  Can phase response curves of various treatments of circadian rhythms be explained by effects on protein synthesis and degradation? , 1982, Bio Systems.

[5]  M. Okada,et al.  Light and Glutamate-Induced Degradation of the Circadian Oscillating Protein BMAL1 during the Mammalian Clock Resetting , 2000, The Journal of Neuroscience.

[6]  Steven M. Reppert,et al.  Posttranslational Mechanisms Regulate the Mammalian Circadian Clock , 2001, Cell.

[7]  P. Ruoff,et al.  Temperature effects on circadian clocks , 2004 .

[8]  M. Menaker,et al.  Regulation of melatonin production by light, darkness, and temperature in the trout pineal , 1992, Journal of Comparative Physiology A.

[9]  F. Fleury-Olela,et al.  Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. , 2000, Genes & development.

[10]  S. Jerebzoff-Quintin,et al.  Cyclic activity of L‐asparaginase through reversible phosphorylation in Leptosphaeria michotii , 1984, FEBS letters.

[11]  B. Schwemmle Thermoperiodic effects and circadian rhythms in flowering of plants. , 1960, Cold Spring Harbor symposia on quantitative biology.

[12]  E. Tobin,et al.  The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Refinetti Amplitude of the daily rhythm of body temperature in eleven mammalian species , 1999 .

[14]  D. P. King,et al.  Molecular genetics of circadian rhythms in mammals. , 2000, Annual review of neuroscience.

[15]  H. Chou,et al.  Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1 , 1999, Planta.

[16]  Malcolm B. Wilkns The circadian rhythm of carbon-dioxide metabolism in Bryophyllum: the mechanism of phase-shift induction by thermal stimuli , 1983, Planta.

[17]  J. Loros,et al.  A recessive circadian clock mutation at the frq locus of Neurospora crassa. , 1986, Genetics.

[18]  E. Eide,et al.  The Circadian Regulatory Proteins BMAL1 and Cryptochromes Are Substrates of Casein Kinase Iε* , 2002, The Journal of Biological Chemistry.

[19]  G. Coleman,et al.  The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats , 1988, Physiology & Behavior.

[20]  J S Takahashi,et al.  Temperature compensation and temperature entrainment of the chick pineal cell circadian clock , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. W. Moyer,et al.  Effect of variable temperatures, darkness and light on the secretion of melatonin by pineal explants in the gecko, Christinus marmoratus , 1997, Brain Research.

[22]  Paolo Sassone-Corsi,et al.  Multilevel regulation of the circadian clock , 2000, Nature Reviews Molecular Cell Biology.

[23]  J. Aschoff,et al.  Aktivitätsmenge und α∶ϱ-Verhältnis als Messgrössen der Tägesperiodik , 2004, Zeitschrift für vergleichende Physiologie.

[24]  N. Mrosovsky,et al.  Nonphotically induced phase shifts of circadian rhythms in the golden hamster: Activity-response curves at different ambient temperatures , 1993, Physiology & Behavior.

[25]  J. Takahashi,et al.  Stopping time: the genetics of fly and mouse circadian clocks. , 2001, Annual review of neuroscience.

[26]  Michael J. McDonald,et al.  Microarray Analysis and Organization of Circadian Gene Expression in Drosophila , 2001, Cell.

[27]  W. Mayer,et al.  Temperature Compensation of Cycloheximide-Sensitive Phases of the Circadian Clock in the Phaseolus Pulvinus* , 1981 .

[28]  A. I. Valenciano,et al.  Serotonin N-acetyltransferase activity as a target for temperature in the regulation of melatonin production by frog retina , 1994, Pflügers Archiv.

[29]  H. Griffiths,et al.  On the Mechanism of Reinitiation of Endogenous Crassulacean Acid Metabolism Rhythm by Temperature Changes , 1997, Plant physiology.

[30]  R. Rawding,et al.  Influence of temperature and photoperiod on plasma melatonin in the mudpuppy, Necturus maculosus. , 1992, General and comparative endocrinology.

[31]  H. Ziegler,et al.  Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean-acid-metabolism plants , 1988, Planta.

[32]  H. Underwood Pineal melatonin rhythms in the lizardAnolis carolinensis: effects of light and temperature cycles , 1985, Journal of Comparative Physiology A.

[33]  M. Samejima,et al.  Light- and temperature-dependence of the melatonin secretion rhythm in the pineal organ of the lamprey, Lampetra japonica. , 2000, The Japanese journal of physiology.

[34]  E. Herzog,et al.  Keeping an eye on retinal clocks. , 1999, Chronobiology international.

[35]  S. Hui,et al.  Direct observation of domains in wet lipid bilayers , 1975, Science.

[36]  M. Yatvin,et al.  Role of cellular membranes in hyperthermia: some observations and theories reviewed. , 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[37]  C S Pittendrigh,et al.  Temperature compensation of the circadian oscillation in drosophila pseudoobscura and its entrainment by temperature cycles. , 1968, Journal of insect physiology.

[38]  L. Rensing,et al.  Possible link between circadian rhythm and heat shock response in Neurospora crassa. , 1987, Chronobiology international.

[39]  Y. Fukada,et al.  Photoreception and circadian clock system of the chicken pineal gland , 2001, Microscopy research and technique.

[40]  Jeffrey C. Hall,et al.  The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila , 1998, Cell.

[41]  A. Kulkarni,et al.  TEMPERATURE DEPENDENT ECLOSION RHYTHMICITY IN THE HIGH ALTITUDE HIMALAYAN STRAINS OF DROSOPHILA ANANASSAE , 2002, Chronobiology international.

[42]  K. Hoffmann Synchronisation der circadianen Aktivitätsperiodik von Eidechsen durch Temperaturcyclen verschiedener Amplitude , 1968, Zeitschrift für vergleichende Physiologie.

[43]  C S Pittendrigh,et al.  The Amplitude of Circadian Oscillations: Temperature Dependence, Latitudinal Clines, and the Photoperiodic Time Measurement , 1991, Journal of biological rhythms.

[44]  J. Dunlap,et al.  Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Eide,et al.  CASEIN KINASE I: ANOTHER COG IN THE CIRCADIAN CLOCKWORKS , 2001, Chronobiology international.

[46]  V. Bruce Environmental Entrainment of Circadian Rhythms , 1960 .

[47]  P. Lakin-Thomas,et al.  Temperature compensation and membrane composition in Neurospora crassa. , 1997, Chronobiology international.

[48]  G. Coleman,et al.  Ambient temperature cycles entrain the free-running circadian rhythms of the stripe-faced dunnart, Sminthopsis macroura , 1990, Journal of Comparative Physiology A.

[49]  Thomas K. Darlington,et al.  Light-dependent sequestration of TIMELESS by CRYPTOCHROME. , 1999, Science.

[50]  H. Erkert,et al.  Differences in temperature sensitivity of the orcadian systems of homoiothermic and heterothermic neotropical bats , 1981 .

[51]  C. Helfrich-Förster,et al.  Organization of the circadian system in insects. , 1998, Chronobiology international.

[52]  L. N. Edmunds,et al.  Rhythmic settling induced by temperature cycles in continuously-stirred autotrophic cultures of Euglena gracilis (Z strain) , 1970, Planta.

[53]  K. Neumann [Site of meiosis and spore formation in the siphonal green alga Derbesia marina]. , 1967, Die Naturwissenschaften.

[54]  C. Fuller,et al.  Environmental synchronizers of squirrel monkey circadian rhythms. , 1977, Journal of applied physiology: respiratory, environmental and exercise physiology.

[55]  J. Takahashi,et al.  Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. , 2000, Annual review of genetics.

[56]  C Robertson McClung,et al.  CIRCADIAN RHYTHMS IN PLANTS. , 2003, Annual review of plant physiology and plant molecular biology.

[57]  C. Pittendrigh,et al.  Circadian rhythms and the circadian organization of living systems. , 1960, Cold Spring Harbor symposia on quantitative biology.

[58]  M. W. Young,et al.  Light-Induced Degradation of TIMELESS and Entrainment of the Drosophila Circadian Clock , 1996, Science.

[59]  U. Lüttge,et al.  Generation of rhythmic and arrhythmic behaviour of Crassulacean acid metabolism in Kalanchoë daigremontiana under continuous light by varying the irradiance or temperature: Measurements in vivo and model simulations , 2004, Planta.

[60]  Y Yang,et al.  Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. Naylor,et al.  Synchronization of the Locomotor Tidal Rhythm of Carcinus , 1969 .

[62]  C. Marvel,et al.  Activation of NMDA Receptors in the Suprachiasmatic Nucleus Produces Light-Like Phase Shifts of the Circadian Clock In Vivo , 1999, The Journal of Neuroscience.

[63]  D. Sidote,et al.  Differential Effects of Light and Heat on theDrosophila Circadian Clock Proteins PER and TIM , 1998, Molecular and Cellular Biology.

[64]  Melatonin Inhibits GnRH‐Induced Increase of cFOS Immunoreactivity in Neonatal Rat Pituitary , 1997, Journal of neuroendocrinology.

[65]  William J. Schwartz,et al.  Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro , 2000, Nature Neuroscience.

[66]  M. Mittag Circadian rhythms in microalgae. , 2001, International review of cytology.

[67]  R. Hudson,et al.  DIVERSITY AND DEVELOPMENT OF CIRCADIAN RHYTHMS IN THE EUROPEAN RABBIT , 2001, Chronobiology international.

[68]  J. W. Hastings,et al.  Effects of temperature upon diurnal rhythms. , 1960, Cold Spring Harbor symposia on quantitative biology.

[69]  D. Kennaway,et al.  Thermocyclic entrainment of lizard blood plasma melatonin rhythms in constant and cyclic photic environments. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[70]  A. I. Valenciano,et al.  Effect of constant and fluctuating temperature on daily melatonin production by eyecups from Rana perezi , 1997, Journal of Comparative Physiology B.

[71]  M. Merrow,et al.  How temperature changes reset a circadian oscillator. , 1998, Science.

[72]  T. Mizuno,et al.  Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis? , 2001, Plant & cell physiology.

[73]  D. Dietz,et al.  Does the photochemistry of the troposphere admit more than one steady state? , 1984, Nature.

[74]  M. Zatz,et al.  Two mechanisms of photoendocrine transduction in cultured chick pineal cells: pertussis toxin blocks the acute but not the phase-shifting effects of light on the melatonin rhythm , 1988, Brain Research.

[75]  A. R. French Periodicity of recurrent hypothermia during hibernation in the pocket mouse,Perognathus longimembris , 2004, Journal of comparative physiology.

[76]  P. Decoursey,et al.  Phase control of activity in a rodent. , 1960, Cold Spring Harbor symposia on quantitative biology.

[77]  M. A. Ali,et al.  Rhythmic secretion of melatonin by the superfused pike pineal organ: thermo- and photoperiod interaction. , 1994, Neuroendocrinology.

[78]  B. Blasius,et al.  Temperature profiles for the expression of endogenous rhythmicity and arrhythmicity of CO2 exchange in the CAM plant Kalanchoë daigremontiana can be shifted by slow temperature changes , 1998, Planta.

[79]  K. Hoffmann Die relative Wirksamkeit von Zeitgebern , 1969, Oecologia.

[80]  E. Morgan,et al.  Laboratory entrainaient of the rhythmic swimming activity of Corophium volutator (Pallas) to cycles of temperature and periodic inundation , 1983, Journal of the Marine Biological Association of the United Kingdom.

[81]  B. Piechulla,et al.  Effect of Temperature Alterations on the Diurnal Expression Pattern of the Chlorophyll a/b Binding Proteins in Tomato Seedlings. , 1990, Plant physiology.

[82]  D. Kennaway,et al.  Thermoperiodic influences on plasma melatonin rhythms in the lizard Tiliqua rugosa: Effect of thermophase duration , 1991, Neuroscience Letters.

[83]  C. Colwell,et al.  CELLULAR COMMUNICATION AND COUPLING WITHIN THE SUPRACHIASMATIC NUCLEUS , 2001, Chronobiology international.

[84]  X. Vafopoulou,et al.  A photosensitive circadian oscillator in an insect endocrine gland: photic induction of rhythmic steroidogenesis in vitro , 1998, Journal of Comparative Physiology A.

[85]  E. Goldberg,et al.  The metabolism of ejaculated spermatozoa from the fowl. , 1961, Journal of cellular and comparative physiology.

[86]  J. A. Barnes,et al.  Signal Transduction Mechanisms , 2012, Developments in Molecular and Cellular Biochemistry.

[87]  D. E. Somers,et al.  The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. , 1998, Development.

[88]  L Rensing,et al.  The effects of temperature change on the circadian clock of Neurospora. , 1995, Ciba Foundation symposium.

[89]  D. Belsham,et al.  Melatonin Receptor Activation Regulates GnRH Gene Expression and Secretion in GT1–7 GnRH Neurons , 2002, The Journal of Biological Chemistry.

[90]  P. Lakin-Thomas,et al.  Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Gooch Effects of Light and Temperature Steps on Circadian Rhythms of Neurospora and Gonyaulax , 1985 .

[92]  E. Tobin,et al.  All in good time: the Arabidopsis circadian clock. , 2000, Trends in plant science.

[93]  L. A. Sawyer,et al.  Natural variation in a Drosophila clock gene and temperature compensation. , 1997, Science.

[94]  L. Rensing,et al.  Heat shock effects on second messenger systems of Neurospora crassa , 1998, Archives of Microbiology.

[95]  C. Monnerjahn,et al.  Heat shock proteins and circadian rhythms. , 1996, Chronobiology international.

[96]  P. Natarajan External synchronizers of tidal activity rhythms in the prawns Penaeus indicus and P. monodon , 1989 .

[97]  M. A. Ali,et al.  Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. , 1992, General and comparative endocrinology.

[98]  J. Dunlap,et al.  Genetics and molecular analysis of circadian rhythms. , 1996, Annual review of genetics.

[99]  D. C. Pratt PHOTOREACTIONS OF ISORHODOPSIN AT LOW TEMPERATURES , 1968, Photochemistry and photobiology.

[100]  B. Piechulla,et al.  Effect of dark phases and temperature on the chlorophyll a/b binding protein mRNA level oscillations in tomato seedlings , 1990, Plant Molecular Biology.

[101]  J. Kiang,et al.  Heat treatment induces an increase in intracellular cyclic AMP content in human epidermoid A-431 cells. , 1991, The Biochemical journal.

[102]  J. Dunlap,et al.  Neurospora crassa: A Unique System for Studying Circadian Rhythms , 1983 .

[103]  P. Lakin-Thomas,et al.  Circadian rhythms in Neurospora crassa: biochemistry and genetics. , 1990, Critical reviews in microbiology.

[104]  L. L. Hyde,et al.  Effects of melatonin administration on the circadian activity rhythm of the lizard Anolis carolinensis , 2000, Physiology & Behavior.

[105]  D. Pelc,et al.  Rhythmic steroidogenesis by the prothoracic glands of the insect Rhodnius prolixus in the absence of rhythmic neuropeptide input: implications for the role of prothoracicotropic hormone. , 1997, General and comparative endocrinology.

[106]  T. Page Circadian organization in cockroaches: Effects of temperature cycles on locomotor activity , 1985 .

[107]  Yi Liu,et al.  Alternative Initiation of Translation and Time-Specific Phosphorylation Yield Multiple Forms of the Essential Clock Protein FREQUENCY , 1997, Cell.

[108]  H. Underwood,et al.  Pineal Melatonin Rhythms in the Lizard Anolis carolinensis: I. Response to Light and Temperature Cycles , 1987, Journal of biological rhythms.

[109]  B. Rence,et al.  Arrhythmically singing crickets: thermoperiodic reentrainment after bilobectomy , 1975, Science.

[110]  P Ruoff,et al.  BIOLOGICAL TIMING AND THE CLOCK METAPHOR: OSCILLATORY AND HOURGLASS MECHANISMS , 2001, Chronobiology international.

[111]  J. W. Hastings,et al.  Inhibitors of protein synthesis on 80S ribosomes phase shift the Gonyaulax clock. , 1982, The Journal of experimental biology.

[112]  A. Foá,et al.  Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[113]  D. Sidote,et al.  Heat-induced degradation of PER and TIM in Drosophila bearing a conditional allele of the heat shock transcription factor gene. , 1999, Chronobiology international.

[114]  J. Takahashi,et al.  Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  L. Rensing,et al.  On the role of Ca2+-calmodulin-dependent and cAMP-dependent protein phosphorylation in the circadian rhythm ofNeurospora crassa , 2004, Journal of Comparative Physiology B.

[116]  P. Lakin-Thomas,et al.  Amplitude Model for the Effects of Mutations and Temperature on Period and Phase Resetting of the Neurospora Circadian Oscillator , 1991, Journal of biological rhythms.

[117]  V. Bolliet,et al.  Multiple circadian oscillators in the photosensitive pike pineal gland: A study using organ and cell culture , 1994, Journal of pineal research.

[118]  J. T. Enright The tidal rhythm of activity of a sand-beach amphipod , 1963, Zeitschrift für vergleichende Physiologie.

[119]  W J Schwartz,et al.  Antiphase oscillation of the left and right suprachiasmatic nuclei. , 2000, Science.

[120]  P Ruoff,et al.  The Goodwin model: simulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa. , 1999, Journal of theoretical biology.

[121]  D. Kennaway,et al.  Melatonin content of the pineal, parietal eye and blood plasma of the lizard,Trachydosaurus rugosus: effect of constant and fluctuating temperature , 1987, Brain Research.

[122]  A. Foá,et al.  Temperature Cycles Induce a Bimodal Activity Pattern in Ruin Lizards: Masking or Clock-Controlled Event? A Seasonal Problem , 2001, Journal of biological rhythms.

[123]  K. Brinkmann Temperatureinflüsse auf die Circadiane Rhythmik von Euglena Gracilis bei Mixotrophie und Autotrophie , 1966, Planta.

[124]  Masaaki Ikeda,et al.  Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. , 2002, Biochemical and biophysical research communications.

[125]  L. N. Edmunds,et al.  Phasing of cell division by temperature cycles in Euglena cultured autotrophically under continuous illumination , 1970, Planta.

[126]  Jeffrey C. Hall,et al.  Behavior in Light-Dark Cycles of Drosophila Mutants That Are Arrhythmic, Blind, or Both , 1993, Journal of biological rhythms.

[127]  U. Schibler,et al.  A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells , 1998, Cell.

[128]  F. Heimbach,et al.  TIME CUES FOR SEMILUNAR REPRODUCTION RHYTHMS IN EUROPEAN POPULATIONS OF CLUNIO MARINUS. II. THE INFLUENCE OF TIDAL TEMPERATURE CYCLES , 1984 .

[129]  Yi Liu,et al.  Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock , 1997, Cell.

[130]  S. Kay,et al.  Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. , 2000, Science.

[131]  Leland Endmund Cellular and Molecular Bases of Biological Clocks , 1988, Springer New York.

[132]  L. Rensing,et al.  Heat shock- and ethanol-induced ionic changes in C6 rat glioma cells determined by NMR and fluorescence spectroscopy , 1997, Brain Research.

[133]  L. Rensing,et al.  Phase response curves obtained by perturbing different variables of a 24 hr model oscillator based on translational control. , 1982, Journal of theoretical biology.

[134]  Yi Liu,et al.  Coiled‐coil domain‐mediated FRQ–FRQ interaction is essential for its circadian clock function in Neurospora , 2001, The EMBO journal.

[135]  Tatsuya Maeda,et al.  A two-component system that regulates an osmosensing MAP kinase cascade in yeast , 1994, Nature.

[136]  L. Rensing,et al.  Differential HSC70 expression during asexual development of Neurospora crassa. , 1997, Microbiology.

[137]  H. M. Webb,et al.  Temperature Relations of an Endogenous Daily Rhythmicity in the Fiddler Crab, Uca , 1948, Physiological Zoology.

[138]  J. Aschoff,et al.  Exogenous and endogenous components in circadian rhythms. , 1960, Cold Spring Harbor symposia on quantitative biology.

[139]  M. A. Ali,et al.  Effects of temperature cycles and photoperiod on rhythmic melatonin secretion from the pineal organ of a teleost (Catostomus commersoni) in vitro , 1991 .

[140]  K. J. Evans Responses of the locomotor activity rhythms of lizards to simultaneous light and temperature cycles. , 1966, Comparative biochemistry and physiology.

[141]  A. Winfree Acute temperature sensitivity of the circadian rhythm in Drosophila , 1972 .

[142]  A. Winfree The geometry of biological time , 1991 .

[143]  Uwe Redlin,et al.  NEURAL BASIS AND BIOLOGICAL FUNCTION OF MASKING BY LIGHT IN MAMMALS: SUPPRESSION OF MELATONIN AND LOCOMOTOR ACTIVITY , 2001, Chronobiology international.

[144]  H. Iwasaki,et al.  Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. , 2000, Current opinion in microbiology.

[145]  J. W. Hastings,et al.  Temperature Dependence of Phase Response Curves for Drug-Induced Phase Shifts , 1989, Journal of biological rhythms.

[146]  D. Los,et al.  Membrane Fluidity and Temperature Perception , 1997, Plant physiology.

[147]  I. Edery,et al.  Resetting the Drosophila Clock by Photic Regulation of PER and a PER-TIM Complex , 1996, Science.

[148]  J. Kiang,et al.  Effect of heat shock, [Ca2+]i, and cAMP on inositol trisphosphate in human epidermoid A-431 cells. , 1993, The American journal of physiology.

[149]  D. Sidote,et al.  How a Circadian Clock Adapts to Seasonal Decreases in Temperature and Day Length , 1999, Neuron.

[150]  J. Palmer The biological rhythms and clocks of intertidal animals , 1995 .

[151]  M. Delgado,et al.  Effect of environmental temperature and photoperiod on the melatonin levels in the pineal, lateral eye, and plasma of the frog, Rana perezi: importance of ocular melatonin. , 1989, General and comparative endocrinology.

[152]  N. Shaw,et al.  Intracellular and Extracellular Cyclic Nucleotides in Wild-Type and White Collar Mutant Strains of Neurospora crassa: Temperature Dependent Efflux of Cyclic AMP from Mycelia. , 1987, Plant physiology.

[153]  M. Menaker,et al.  The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana , 2004, Journal of Comparative Physiology A.

[154]  E. Maywood,et al.  Entrainment of the circadian system of mammals by nonphotic cues. , 1998, Chronobiology international.

[155]  C. Pennartz,et al.  Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock , 2002, Nature.

[156]  C. T. Steele,et al.  Circadian organization and the role of the pineal in birds , 2001, Microscopy research and technique.

[157]  K. Apel,et al.  A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. , 1994, The Plant journal : for cell and molecular biology.

[158]  M. C. Stewart,et al.  Temperature and Light Synchronization Experiments with Circadian Activity Rhythms in Two Color Forms of the Rock Pocket Mouse , 1968, Physiological Zoology.

[159]  Is "masking" an appropriate term? , 1989, Chronobiology international.

[160]  C. Johnson,et al.  Forty years of PRCs--what have we learned? , 1999, Chronobiology international.

[161]  G. Coleman,et al.  Phase Response Curves to Ambient Temperature Pulses in Rats , 1997, Physiology & Behavior.

[162]  L. Rensing,et al.  The effects of protein synthesis inhibitors on theGonyaulax clock: II. The effect of cycloheximide on ultrastructural parameters , 1980 .

[163]  P. Harris,et al.  The circadian rhythm in Bryophyllum leaves: Phase control by radiant energy , 2004, Planta.

[164]  E. Ampleford,et al.  Circadian control of a daily rhythm in hemolymph ecdysteroid titer in the insect Rhodnius prolixus (Hemiptera). , 1985, General and comparative endocrinology.

[165]  A. Sehgal,et al.  Regulation of the Drosophila Protein Timeless Suggests a Mechanism for Resetting the Circadian Clock by Light , 1996, Cell.

[166]  M. Sargent,et al.  Effects of temperature perturbations on circadian conidiation in neurospora. , 1979, Plant physiology.

[167]  M. Wilkins,et al.  Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi , 1989, Planta.

[168]  S. K. Roberts CircadianActivity Rhythms in Cockroaches II. Entrainment and phase shifting , 1962 .

[169]  D. Kennaway,et al.  Thermoperiod and photoperiod interact to affect the phase of the plasma melatonin rhythm in the lizard, Tiliqua rugosa , 1989, Neuroscience Letters.

[170]  S. Golden,et al.  A KaiC-Interacting Sensory Histidine Kinase, SasA, Necessary to Sustain Robust Circadian Oscillation in Cyanobacteria , 2000, Cell.

[171]  K J Petrie,et al.  Melatonin for the prevention and treatment of jet lag. , 2002, The Cochrane database of systematic reviews.

[172]  H. Pohl Temperature Cycles as Zeitgeber for the Circadian Clock of Two Burrowing Rodents, the Normothermic Antelope Ground Squirrel and the Heterothermic Syrian Hamster , 2003 .

[173]  Hermann Pohl Wirkung der Temperatur auf die mit Licht synchronisierte Aktivitätsperiodik bei Warmblütern , 1968, Zeitschrift für vergleichende Physiologie.

[174]  Hermann Pohl Einfluß der Temperatur auf die freilaufende circadiane Aktivitätsperiodik bei Warmblütern , 1968, Zeitschrift für vergleichende Physiologie.

[175]  G. Tosini MELATONIN CIRCADIAN RHYTHM IN THE RETINA OF MAMMALS , 2000, Chronobiology international.

[176]  L. Rensing,et al.  The effects of protein synthesis inhibitors on theGonyaulax clock , 1980, Journal of comparative physiology.

[177]  G. Zhi,et al.  Identification of a Calcium/Calmodulin-dependent Protein Kinase That Phosphorylates the Neurospora Circadian Clock Protein FREQUENCY* , 2001, The Journal of Biological Chemistry.

[178]  T. Mizuno,et al.  Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. , 2000, Plant & cell physiology.

[179]  M. Rollag,et al.  What does changing the temperature do to the melatonin rhythm in cultured chick pineal cells? , 1994, The American journal of physiology.

[180]  H. Heller,et al.  Circadian Rhythms in the Suprachiasmatic Nucleus are Temperature-Compensated and Phase-Shifted by Heat Pulses In Vitro , 1999, The Journal of Neuroscience.

[181]  Y Sakaki,et al.  Entrainment of the circadian clock in the liver by feeding. , 2001, Science.

[182]  D. Kennaway,et al.  Effect of constant temperatures, darkness and light on the secretion of melatonin by pineal explants and retinas in the gecko Christinus marmoratus , 1995, Brain Research.

[183]  A. Matsumoto,et al.  Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. , 1998, Journal of insect physiology.

[184]  H. Nakashima,et al.  Cycloheximide-induced phase shifting of circadian clock of Neurospora. , 1981, The American journal of physiology.

[185]  B. Schwemmle Zur Temperaturabhängigkeit der Blütenbildung und der endogenen Tagesrhythmik bei Kalanchoë Bloßfeldiana , 2004, Naturwissenschaften.

[186]  I. Belan,et al.  Daily and Seasonal Rhythms in Selected Body Temperatures in the Australian Lizard Tiliqua rugosa (Scincidae): Field and Laboratory Observations , 1998, Physiological Zoology.

[187]  A. Kureck Circadian Eclosion Rhythm in Chironomus Thummi: Ecological Adjustment to Different Temperature Levels and the Role of Temperature Cycles , 1980 .

[188]  Zhi-Yong Wang,et al.  Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression , 1998, Cell.

[189]  V. Gooch,et al.  Temperature Effects on the Resetting of the Phase of the Neurospora Circadian Rhythm , 1994, Journal of biological rhythms.

[190]  Fritz Bühnemann Das endodiurnale System der Oedogoniumzelle III , 1955 .

[191]  E. Naylor,et al.  In living organisms: Animals , 1971 .

[192]  M. K. Chandrashekaran Phase shifts in the Drosophila pseudoobscura circadian rhythm evoked by temperature pulses of varying durations , 1974 .

[193]  D. Jones,et al.  The swimming rhythm of the sand beach isopod Eurydice pulchra , 1970 .

[194]  J. Dunlap,et al.  Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. , 1997, Science.

[195]  E. Naylor TEMPERATURE RELATIONSHIPS OF THE LOCOMOTOR RHYTHM OF CARCINUS , 1963 .

[196]  J. Browse,et al.  Temperature sensing and cold acclimation. , 2001, Current opinion in plant biology.

[197]  P Ruoff,et al.  The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian Clock , 1999, Journal of biological rhythms.

[198]  J. T. Enright Temperature and the free-running circadian rhythm of the house finch. , 1966, Comparative biochemistry and physiology.

[199]  L. L. Hyde,et al.  Daily melatonin infusions entrain the locomotor activity of pinealectomized lizards , 1995, Physiology & Behavior.

[200]  M. Pálková,et al.  Effect of ambient temperature on the circadian activity rhythm in common marmosets, Callithrix j. jacchus (primates). , 1999, Chronobiology international.

[201]  A. Rikin Temperature-induced phase shifting of circadian rhythms in cotton seedlings as related to variations in chilling resistance , 1991, Planta.

[202]  R. Hardeland,et al.  Influence of temperature on biological rhythms , 1988 .

[203]  R. Maier Phase‐shifting of the circadian rhythm of eclosion in Drosophila pseudoobscura with temperature‐pulses∗∗ , 1973 .

[204]  T. Roenneberg,et al.  Two circadian oscillators in one cell , 1993, Nature.

[205]  P. Pévet,et al.  Entrainment of rat circadian rhythms by daily administration of melatonin. Influence of the mode of administration. , 1999, Advances in experimental medicine and biology.

[206]  G. Macino,et al.  Role of a white collar‐1–white collar‐2 complex in blue‐light signal transduction , 1999, The EMBO journal.

[207]  E. Morgan,et al.  The effects of low temperature pulses in rephasing the endogenous activity rhythm of Corophium volutator (Pallas) , 1983, Journal of the Marine Biological Association of the United Kingdom.

[208]  Erwin Bünning,et al.  The Physiological Clock , 1964, Heidelberg Science Library.

[209]  S. Honma,et al.  MULTIPLE OSCILLATORS IN THE SUPRACHIASMATIC NUCLEUS , 2001, Chronobiology international.

[210]  J. Dunlap,et al.  Genetic and molecular analysis of circadian rhythms in Neurospora. , 2001, Annual review of physiology.

[211]  J. Vanecek,et al.  Dual Effect of Melatonin on Gonadotropin-Releasing-Hormone-Induced Ca2+ Signaling in Neonatal Rat Gonadotropes , 2001, Neuroendocrinology.

[212]  M. Menaker,et al.  Temperature-compensated circadian clock in the pineal of Anolis. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[213]  S. Daan,et al.  CIRCADIAN PHASE AND PERIOD RESPONSES TO LIGHT STIMULI IN TWO NOCTURNAL RODENTS , 2002, Chronobiology international.

[214]  J. Calvet,et al.  The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene , 1987, Molecular and cellular biology.

[215]  E. Uebelmesser Über den endonomen Tagesrhythmus der Sporangienträgerbildung von Pilobolus , 2004, Archiv für Mikrobiologie.

[216]  J. Comolli,et al.  An Inhibitor of Protein Phosphorylation Stops the Circadian Oscillator and Blocks Light-Induced Phase Shifting in Gonyaulax polyedra , 1994, Journal of biological rhythms.

[217]  Lily Yan,et al.  Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript , 1997, Cell.

[218]  J. C. Hall,et al.  Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[219]  P. Lankinen,et al.  Effects of Temperature on Weak Circadian Eclosion Rhythmicity in Chymomyza costata (Diptera: Drosophilidae). , 1997, Journal of insect physiology.

[220]  J. Besharse,et al.  Tryptophan hydroxylase mRNA levels are regulated by the circadian clock, temperature, and cAMP in chick pineal cells , 1996, Brain Research.

[221]  I. Edery Role of posttranscriptional regulation in circadian clocks: lessons from Drosophila. , 1999, Chronobiology international.

[222]  T. Kondo,et al.  The current state and problems of circadian clock studies in cyanobacteria. , 2000, Plant & cell physiology.

[223]  A. A. Fincham Rhythmic Behaviour of the Intertidal Amphipod Bathyporeia Pelagica , 1970, Journal of the Marine Biological Association of the United Kingdom.

[224]  A. Tilden,et al.  Influence of photoperiod and temperature on serum melatonin in the diamondback water snake, Nerodia rhombifera. , 1993, General and comparative endocrinology.

[225]  J. Shaw,et al.  Circadian Rhythms in Neurospora: A New Measurement, the Reset Zone , 2000, Journal of biological rhythms.

[226]  M. A. Ali,et al.  Melatonin secretion in vitro from the pineal complex of the lamprey Petromyzon marinus. , 1993, General and comparative endocrinology.

[227]  Hastings Jw,et al.  Effects of Temperature upon Diurnal Rhythms , 1960 .

[228]  L. Rensing,et al.  Perturbations of Cellular Circadian Rhythms by Light and Temperature , 1987 .

[229]  J. Money,et al.  Suprachiasmatic nucleus: the mind's clock , 1993 .

[230]  J. Aschoff,et al.  Circadian Activity Rhythms in Squirrel Monkeys: Entrainment by Temperature Cycles 1 , 1986, Journal of biological rhythms.

[231]  J. Price Are competing intermolecular and intramolecular interactions of PERIOD protein important for the regulation of circadian rhythms in Drosophila? , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[232]  J. Loros,et al.  Loss of Temperature Compensation of Circadian Period Length in the frq-9 Mutant of Neurospora crassa , 1986, Journal of biological rhythms.

[233]  H. Tokura,et al.  Effects of temperature on the circadian rhythm of pig-tailed macaques Macaca nemestrina. , 1983, The American journal of physiology.

[234]  J. Dunlap,et al.  The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock Resetting , 2001, Cell.

[235]  G. C. Stephens Influence of Temperature Fluctuations on the Diurnal Melanophore Rhythm of the Fiddler Crab Uca , 1957, Physiological Zoology.

[236]  J. W. Hastings,et al.  Conditionality of circadian rhythmicity: Synergistic action of light and temperature , 2004, Journal of comparative physiology.

[237]  L. Rensing,et al.  On the role of energy metabolism in Neurospora circadian clock function. , 1985, Chronobiology international.

[238]  J. Redman,et al.  Entrainment of Activity Rhythms to Temperature Cycles in Diurnal Palm Squirrels , 1998, Physiology & Behavior.

[239]  C. Bombeck,et al.  Influence of maturation on activity-stress related pathology in the rat colon , 1986, Physiology & Behavior.

[240]  M. Lohmann Der Einfluss von Beleuchtungsstärke und Temperatur auf die Tagesperiodische laufaktivität des Mehlkäfers, Tenebrio Molitor, L. , 1964, Zeitschrift für vergleichende Physiologie.

[241]  E. Ampleford,et al.  Circadian control of ecdysis inRhodnius prolixus (Hemiptera) , 1982, Journal of comparative physiology.

[242]  C. M. Singer,et al.  The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. , 1998, Chronobiology international.

[243]  D. Thiele,et al.  The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. , 2001, Genes & development.

[244]  P. Minorsky,et al.  Temperature sensing by plants: a review and hypothesis , 1989 .

[245]  Zuwei Qian,et al.  A light-entrainment mechanism for the Drosophila circadian clock , 1996, Nature.

[246]  T. Deguchi A circadian oscillator in cultured cells of chicken pineal gland , 1979, Nature.

[247]  C. Colwell Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus , 2000, The European journal of neuroscience.

[248]  W. Loher,et al.  Circadian control of singing in crickets: Two different pacemakers for early-evening and before-dawn activity , 1984 .

[249]  L. Rensing,et al.  The Effects of Temperature on the Circadian Rhythms of Flashing and Glow in Gonyaulax polyedra: Are the Two Rhythms Controlled by Two Oscillators? , 1992, Journal of biological rhythms.

[250]  Jennifer J. Loros,et al.  Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript , 1995, Cell.

[251]  Innocenti,et al.  Seasonal variations of pineal involvement in the circadian organization of the ruin lizard Podarcis sicula , 1996, The Journal of experimental biology.

[252]  C. Pittendrigh,et al.  Circadian Locomotor Rhythms of Rodents in the Arctic , 1967, The American Naturalist.

[253]  D. E. Somers,et al.  Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. , 2000, Science.

[254]  M. Dubocovich,et al.  Melatonin Receptor Signaling: Finding the Path Through the Dark , 2001, Science's STKE.

[255]  M. Gillette,et al.  Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. , 1994, Science.

[256]  R. Lindberg,et al.  Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. , 1974, Chronobiologia.

[257]  R. Dhindsa,et al.  Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. , 1995, The Plant cell.

[258]  P. Pévet,et al.  Pineal and circulating melatonin rhythms in the box turtle, Terrapene carolina triunguis: effect of photoperiod, light pulse, and environmental temperature. , 1988, General and comparative endocrinology.

[259]  A. Foá,et al.  The circadian system of reptiles: a multioscillatory and multiphotoreceptive system , 2001, Physiology & Behavior.

[260]  Joanna Putterill,et al.  The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering , 1998, Cell.

[261]  J. Dunlap Molecular Bases for Circadian Clocks , 1999, Cell.

[262]  D. Bell-Pedersen Circadian Rhythms in Neurospora crassa , 2002 .

[263]  E. Craig,et al.  The heat shock response. , 1985, CRC critical reviews in biochemistry.