M-Convex Function Minimization by Continuous Relaxation Approach: Proximity Theorem and Algorithm

The concept of M-convexity for functions in integer variables, introduced by Murota [Adv. Math., 124 (1996), pp. 272–311], plays a primary role in the theory of discrete convex analysis. In this paper, we consider the problem of minimizing an M-convex function, which is a natural generalization of the separable convex resource allocation problem under a submodular constraint and contains some classes of nonseparable convex function minimization on integer lattice points. We propose a new approach for M-convex function minimization based on continuous relaxation. By establishing proximity theorems we develop a new algorithm based on continuous relaxation. We apply the approach to some special cases of the separable convex quadratic resource allocation problem and the convex quadratic tree resource allocation problem to obtain faster algorithms.

[1]  Arie Tamir,et al.  A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on two-terminal series—parallel networks , 1993, Math. Program..

[2]  Kazuo Murota,et al.  On Steepest Descent Algorithms for Discrete Convex Functions , 2003, SIAM J. Optim..

[3]  Dorit S. Hochbaum,et al.  Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems , 1994, Math. Oper. Res..

[4]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[5]  Naoki Katoh,et al.  Resource Allocation Problems , 1998 .

[6]  Satoru Iwata,et al.  Conjugate Scaling Algorithm for Fenchel-Type Duality in Discrete Convex Optimization , 2002, SIAM J. Optim..

[7]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[8]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[9]  Kazuo Murota,et al.  Fundamental Properties of M-Convex and L-Convex Functions in Continuous Variables , 2004 .

[10]  Kazuo Murota,et al.  Conjugacy relationship between M-convex and L-convex functions in continuous variables , 2004, Math. Program..

[11]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[12]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[13]  Kazuo Murota,et al.  Quadratic M-convex and L-convex functions , 2004, Adv. Appl. Math..

[14]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[15]  Kazuo Murota Submodular Flow Problem with a Nonseparable Cost Function , 1999, Comb..

[16]  Akiyoshi Shioura,et al.  Minimization of an M-convex Function , 1998, Discret. Appl. Math..

[17]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[18]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Akihisa Tamura A Coordinatewise Domain Scaling Algorithm for M-convex Function Minimization , 2002, IPCO.

[20]  Satoko Moriguchi,et al.  On Hochbaum's Scaling Algorithm for the General Resource Allocation Problem , 2002 .

[21]  Kazuo Murota,et al.  Scaling Algorithms for M-Convex Function Minimization , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[22]  Kazuo Murota,et al.  Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..

[23]  M. A. Pollatschek,et al.  On Some Nonlinear Knapsack Problems , 1977 .

[24]  Jadranka Skorin-Kapov,et al.  Some proximity and sensitivity results in quadratic integer programming , 1990, Math. Program..

[25]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[26]  Akiyoshi Shioura,et al.  Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem , 2004, Discret. Appl. Math..

[27]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[28]  A. Zaporozhets,et al.  A polynomial algorithm for resourse allocation problems with polymatroid constrains 1 , 1996 .

[29]  Satoko Moriguchi,et al.  On Hochbaum's Proximity-Scaling Algorithm for the General Resource Allocation Problem , 2004, Math. Oper. Res..

[30]  Kazuo Murota,et al.  Convexity and Steinitz's Exchange Property , 1996, IPCO.

[31]  Donald B. Johnson,et al.  The Complexity of Selection and Ranking in X+Y and Matrices with Sorted Columns , 1982, J. Comput. Syst. Sci..

[32]  Dorit S. Hochbaum,et al.  About strongly polynomial time algorithms for quadratic optimization over submodular constraints , 1995, Math. Program..

[33]  P. Brucker Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .