Glyph-Based Comparative Visualization for Diffusion Tensor Fields

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

[1]  Carl-Fredrik Westin,et al.  Diffusion k-tensor Estimation from Q-ball Imaging Using Discretized Principal Axes , 2006, MICCAI.

[2]  Hans Hagen,et al.  Tensor Field Reconstruction Based on Eigenvector and Eigenvalue Interpolation , 2010, Scientific Visualization: Advanced Concepts.

[3]  David H. Laidlaw,et al.  Visualizing the Differences between Diffusion Tensor Volume Images , 2000 .

[4]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[5]  Helwig Hauser,et al.  Critical design and realization aspects of glyph-based 3D data visualization , 2009, SCCG.

[6]  Carl-Fredrik Westin,et al.  Diffusion Tensor Analysis With Invariant Gradients and Rotation Tangents , 2007, IEEE Transactions on Medical Imaging.

[7]  Bernhard Schölkopf,et al.  HiFiVE: A Hilbert Space Embedding of Fiber Variability Estimates for Uncertainty Modeling and Visualization , 2013, Comput. Graph. Forum.

[8]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[9]  Min Chen,et al.  Glyph sorting: Interactive visualization for multi-dimensional data , 2013, Inf. Vis..

[10]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[11]  Carl-Fredrik Westin,et al.  DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity , 2005, NeuroImage.

[12]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.

[13]  Wiro J. Niessen,et al.  Tract-specific white matter degeneration in aging: The Rotterdam Study , 2015, Alzheimer's & Dementia.

[14]  G. Kindlmann,et al.  Superquadric Glyphs for Symmetric Second-Order Tensors , 2010, IEEE Transactions on Visualization and Computer Graphics.

[15]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[17]  D L Parker,et al.  Comparison of gradient encoding schemes for diffusion‐tensor MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[18]  Carl-Fredrik Westin,et al.  Geodesic-Loxodromes for Diffusion Tensor Interpolation and Difference Measurement , 2007, MICCAI.

[19]  G. Kindlmann,et al.  Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images , 2006, Magnetic resonance in medicine.

[20]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[21]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[22]  Jeffrey Heer,et al.  Visual Embedding: A Model for Visualization , 2014, IEEE Computer Graphics and Applications.

[23]  Talma Hendler,et al.  Normal white matter development from infancy to adulthood: Comparing diffusion tensor and high b value diffusion weighted MR images , 2005, Journal of magnetic resonance imaging : JMRI.

[24]  Thomas Schultz,et al.  Visualizing Tensor Normal Distributions at Multiple Levels of Detail , 2016, IEEE Transactions on Visualization and Computer Graphics.

[25]  Vivek Verma,et al.  Comparative flow visualization , 2004, IEEE Transactions on Visualization and Computer Graphics.

[26]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[27]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[28]  T. Hendler,et al.  High b‐value q‐space analyzed diffusion‐weighted MRI: Application to multiple sclerosis , 2002, Magnetic resonance in medicine.

[29]  Kai Lawonn,et al.  Comparative Blood Flow Visualization for Cerebral Aneurysm Treatment Assessment , 2014, Comput. Graph. Forum.

[30]  R. Edelman,et al.  Diffusion alterations in corpus callosum of patients with HIV. , 2006, AJNR. American journal of neuroradiology.

[31]  Markus Stommel,et al.  Visualization and Analysis of Second‐Order Tensors: Moving Beyond the Symmetric Positive‐Definite Case , 2013, Comput. Graph. Forum.

[32]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[33]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[34]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[35]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[36]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[37]  Charl P. Botha,et al.  Articulated Planar Reformation for Change Visualization in Small Animal Imaging , 2010, IEEE Transactions on Visualization and Computer Graphics.

[38]  B. M. ter Haar Romeny,et al.  Analysis of Distance/Similarity Measures for Diffusion Tensor Imaging , 2008 .

[39]  Michael Wimmer,et al.  YMCA — Your mesh comparison application , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[40]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[41]  Max A Viergever,et al.  Display of fused images: methods, interpretation, and diagnostic improvements. , 2003, Seminars in nuclear medicine.

[42]  Charl P. Botha,et al.  Image-based rendering of intersecting surfaces for dynamic comparative visualization , 2011, The Visual Computer.

[43]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.