Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré
暂无分享,去创建一个
[1] Jonathan C. Mattingly,et al. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.
[2] P. Zitt. Annealing diffusions in a potential function with a slow growth , 2008 .
[3] Orlicz–Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups☆ , 2006, math/0611638.
[4] P. Zitt. Annealing diffusions in a slowly growing potential , 2006, math/0607147.
[5] R. Douc,et al. Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.
[6] P. Cattiaux,et al. Isoperimetry between exponential and Gaussian , 2006, math/0601475.
[7] Cédric Villani,et al. Hypocoercive Diffusion Operators , 2006 .
[8] P. Cattiaux,et al. Weak logarithmic Sobolev inequalities and entropic convergence , 2005, math/0511255.
[9] P. Cattiaux. Hypercontractivity for perturbed diffusion semigroups , 2005, math/0510258.
[10] P. Cattiaux,et al. Concentration for independent random variables with heavy tails , 2005, math/0505492.
[11] G. Roberts,et al. SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES , 2005, math/0505260.
[12] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[13] Feng-Yu Wang. A Generalization of Poincaré and Log-Sobolev Inequalities , 2005 .
[14] R. Douc,et al. Quantitative bounds on convergence of time-inhomogeneous Markov chains , 2004, math/0503532.
[15] F. Barthe,et al. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry , 2004, math/0407219.
[16] P. Cattiaux. A Pathwise Approach of Some Classical Inequalities , 2004 .
[17] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[18] Liming Wu,et al. Essential spectral radius for Markov semigroups (I): discrete time case , 2004 .
[19] M. Röckner,et al. Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups , 2001 .
[20] Liming Wu. Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems , 2001 .
[21] Liming Wu,et al. Spectral gap of positive operators and applications , 2000 .
[22] Liming Wu. Uniformly Integrable Operators and Large Deviations for Markov Processes , 2000 .
[23] Feng-Yu Wang,et al. Functional Inequalities for Empty Essential Spectrum , 2000 .
[24] G. Royer,et al. Une initiation aux inégalités de Sobolev logarithmiques , 1999 .
[25] A. Veretennikov,et al. On polynomial mixing bounds for stochastic differential equations , 1997 .
[26] S. Meyn,et al. Exponential and Uniform Ergodicity of Markov Processes , 1995 .
[27] On global Sobolev inequalities , 1994 .
[28] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[29] S. Meyn,et al. Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.
[30] S. Meyn,et al. Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.
[31] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[32] G. Lu. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. , 1992 .
[33] Bruno Franchi,et al. Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations , 1991 .
[34] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[35] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .