Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré

[1]  Jonathan C. Mattingly,et al.  Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.

[2]  P. Zitt Annealing diffusions in a potential function with a slow growth , 2008 .

[3]  Orlicz–Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups☆ , 2006, math/0611638.

[4]  P. Zitt Annealing diffusions in a slowly growing potential , 2006, math/0607147.

[5]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[6]  P. Cattiaux,et al.  Isoperimetry between exponential and Gaussian , 2006, math/0601475.

[7]  Cédric Villani,et al.  Hypocoercive Diffusion Operators , 2006 .

[8]  P. Cattiaux,et al.  Weak logarithmic Sobolev inequalities and entropic convergence , 2005, math/0511255.

[9]  P. Cattiaux Hypercontractivity for perturbed diffusion semigroups , 2005, math/0510258.

[10]  P. Cattiaux,et al.  Concentration for independent random variables with heavy tails , 2005, math/0505492.

[11]  G. Roberts,et al.  SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES , 2005, math/0505260.

[12]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[13]  Feng-Yu Wang A Generalization of Poincaré and Log-Sobolev Inequalities , 2005 .

[14]  R. Douc,et al.  Quantitative bounds on convergence of time-inhomogeneous Markov chains , 2004, math/0503532.

[15]  F. Barthe,et al.  Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry , 2004, math/0407219.

[16]  P. Cattiaux A Pathwise Approach of Some Classical Inequalities , 2004 .

[17]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[18]  Liming Wu,et al.  Essential spectral radius for Markov semigroups (I): discrete time case , 2004 .

[19]  M. Röckner,et al.  Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups , 2001 .

[20]  Liming Wu Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems , 2001 .

[21]  Liming Wu,et al.  Spectral gap of positive operators and applications , 2000 .

[22]  Liming Wu Uniformly Integrable Operators and Large Deviations for Markov Processes , 2000 .

[23]  Feng-Yu Wang,et al.  Functional Inequalities for Empty Essential Spectrum , 2000 .

[24]  G. Royer,et al.  Une initiation aux inégalités de Sobolev logarithmiques , 1999 .

[25]  A. Veretennikov,et al.  On polynomial mixing bounds for stochastic differential equations , 1997 .

[26]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[27]  On global Sobolev inequalities , 1994 .

[28]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[29]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[30]  S. Meyn,et al.  Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.

[31]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[32]  G. Lu Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. , 1992 .

[33]  Bruno Franchi,et al.  Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations , 1991 .

[34]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[35]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .