Spectral alteration of the Meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-Earth asteroids

[1]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[2]  Richard P. Binzel,et al.  Spectral observations for near-Earth objects including potential target 4660 Nereus : Results from Meudon remote observations at the NASA Infrared Telescope Facility (IRTF) , 2004 .

[3]  Napoli,et al.  Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy , 2003, astro-ph/0307402.

[4]  T. Henning,et al.  Structural processing of enstatite by ion bombardment , 2003 .

[5]  B. Lavielle,et al.  COLLISIONAL HISTORY OF THE FRENCH CHONDRITE FALLS (II) , 2002 .

[6]  T. Hiroi,et al.  Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples , 2001 .

[7]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[8]  Sho Sasaki,et al.  Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering , 2001, Nature.

[9]  J. Borg,et al.  Structural and chemical alteration of crystalline olivine under low energy He + irradiation , 2001 .

[10]  G. Strazzulla,et al.  Vibrational spectroscopy of ion-irradiated ices. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  L. V. Moroz,et al.  Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .

[12]  C.-H. Chen,et al.  Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes , 2000 .

[13]  M. Martino,et al.  The Eunomia Family: A Visible Spectroscopic Survey , 1999 .

[14]  Hideo Ohashi,et al.  Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples , 1999 .

[15]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[16]  L. McFadden,et al.  Surface modification of olivine by H+ and He+ bombardment , 1999 .

[17]  M. Barucci,et al.  A VISIBLE SPECTROSCOPIC SURVEY OF THE FLORA CLAN , 1998 .

[18]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[19]  R. Binzel,et al.  Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites , 1996, Science.

[20]  C. Pieters,et al.  Optical Effects of Regolith Processes on S-Asteroids as Simulated by Laser Shots on Ordinary Chondrite and Other Mafic Materials , 1996 .

[21]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[22]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[23]  B. Velde,et al.  Comparison of the raman microprobe spectra of (Mg, Fe)2SiO4 and Mg2GeO4 with olivine and spinel structures , 1986 .

[24]  Bruce Hapke,et al.  Effects of darkening processes on surfaces of airless bodies , 1975 .

[25]  B. Lavielle,et al.  Noble Gas Exposure Ages of the French Chondrite Falls , 2001 .

[26]  Alain Doressoundiram,et al.  EOS Family: A Spectroscopic Study , 1998 .

[27]  E. Fischer,et al.  Optical effects of space weathering on lunar soils and the role of the finest fraction , 1993 .

[28]  Dale P. Cruikshank,et al.  Reflectance spectroscopy and asteroid surface mineralogy , 1989 .

[29]  G. C. Wilson,et al.  Sputtering rates of minerals and implications for abundances of solar elements in lunar samples , 1980 .

[30]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[31]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .