Instability analysis of thin plates and arbitrary shells using a faceted shell element with Loof nodes

The faceted representation is employed in the paper to derive a 24-dof triangular shell element for the instability analysis of shell structures. This element, without the deficiencies of displacement incompatibility, singularity with coplanar elements, inability to model intersections, and low-order membrane strain representation, which are normally associated with existing flat elements, has previously been found by the authors to perform well in linear static shell analyses. The total Lagrangian approach is used in the nonlinear formulation, and the results of the various numerical examples indicate that its performance is comparable to existing nonlinear shell elements. An extrapolation stiffness procedure, which will improve the convergence characteristics of the constant arc length solution algorithm used here, is also presented.

[1]  P. J. Dowling,et al.  Nonlinear finite element analysis of shell structures using the semi-loof element , 1980 .

[2]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[3]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[4]  Thomas J. R. Hughes,et al.  A LARGE DEFORMATION FORMULATION FOR SHELL ANALYSIS BY THE FINITE ELEMENT METHOD , 1981 .

[5]  Z. Waszczyszyn Numerical problems of nonlinear stability analysis of elastic structures , 1983 .

[6]  C. Oran Tangent Stiffness in Plane Frames , 1973 .

[7]  Jerome J. Connor,et al.  Geometrically Nonlinear Finite-Element Analysis , 1969 .

[8]  T. Yang Elastic Snap-Through Analysis of Curved Plates Using Discrete Elements , 1972 .

[9]  J. A. Stricklin,et al.  Displacement incrementation in non-linear structural analysis by the self-correcting method , 1977 .

[10]  B. Kröplin Postbuckling Instability Analysis of Shells Using the Mixed Method , 1982 .

[11]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[12]  Tore H. Søreide,et al.  Collapse behavior of stiffened plates using alternative finite element formulations , 1977 .

[13]  R. Leicester Finite Deformations of Shallow Shells , 1968 .

[14]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[15]  J. L. Meek,et al.  A discrete Kirchoff plate bending element with loof nodes , 1985 .

[16]  L. A. Schmit,et al.  Finite deflection structural analysis using plate and shell discreteelements. , 1968 .

[17]  R. H. Gallagher,et al.  A discrete element procedure for thin-shell instability analysis. , 1967 .

[18]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[19]  Robert E. Jones,et al.  Development and evaluation of two non-linear shell elements , 1980 .

[20]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[21]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[22]  M A Crisfield VARIABLE STEP-LENGTHS FOR NON-LINEAR STRUCTURAL ANALYSIS , 1982 .

[23]  Ekkehard Ramm,et al.  The Displacement Finite Element Method in Nonlinear Buckling Analysis of Shells , 1982 .

[24]  H. S. Tan,et al.  A stiffness matrix extrapolation strategy for nonlinear analysis , 1984 .

[25]  T. Belytschko,et al.  Large displacement, transient analysis of space frames , 1977 .

[26]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[27]  LARGE DEFLECTION AND POST-BUCKLING ANALYSIS OF TWO AND THREE DIMENSIONAL ELASTIC SPATIAL FRAMES , 1983 .

[28]  H. Parisch,et al.  Geometrical nonlinear analysis of shells , 1978 .

[29]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .

[30]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[31]  A. Pica,et al.  Postbuckling behaviour of plates and shells using a mindlin shallow shell formulation , 1980 .

[32]  Ray W. Clough,et al.  Convergence Criteria for Iterative Processes , 1972 .

[33]  Egor P. Popov,et al.  Nonlinear Buckling Analysis of Sandwich Arches , 1971 .

[34]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[35]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[36]  P. G. Bergan,et al.  Nonlinear analysis of free-form shells by flat finite elements , 1978 .

[37]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[38]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[39]  Eduardo N. Dvorkin,et al.  Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .

[40]  T. Pian,et al.  Large deflection analysis of thin elastic structures by the assumed stress hybrid finite element method , 1977 .

[41]  T. Y. Chang,et al.  Large deflection and post-buckling analysis of shell structures , 1982 .

[42]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[43]  P. Bergan,et al.  Solution techniques for non−linear finite element problems , 1978 .

[44]  Robert J. Hayduk,et al.  Energy minimization versus pseudo force technique for nonlinear structural analysis , 1980 .

[45]  R. J. Hayduk,et al.  Recent Developments in Quasi-Newton Methods for Structural Analysis and Synthesis , 1981 .

[46]  T. M. Roberts,et al.  The use of finite element mid-increment stiffness matrices in the post-buckling analysis of imperfect structures , 1971 .

[47]  D. Owen,et al.  Elastoplastic and geometrically nonlinear thin shell analysis by the semiloof element , 1981 .

[48]  L. Lachance,et al.  Linear and non-linear analysis of thin shallow shells by mixed finite elements , 1975 .

[49]  B. O. Almroth,et al.  Future trends in nonlinear structural analysis , 1979 .

[50]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[51]  A. B. Sabir,et al.  The applications of finite elements to large deflection geometrically nonlinear behaviour of cylindrical shells , 1972 .

[52]  Tetsuya Matsui,et al.  A new finite element scheme for instability analysis of thin shells , 1976 .

[53]  W. T. Koiter Current Trends in the Theory of Buckling , 1976 .

[54]  Ray W. Clough,et al.  Large deflection analysis of plates and shallow shells using the finite element method , 1973 .

[55]  John L. Meek,et al.  A faceted shell element with Loof nodes , 1986 .

[56]  Samuel Levy,et al.  Bending of Rectangular Plates With Large Deflections , 1942 .

[57]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[58]  S. Timoshenko Theory of Elastic Stability , 1936 .

[59]  E. Hinton,et al.  Finite element analysis of geometrically nonlinear plate behaviour using a mindlin formulation , 1980 .

[60]  Y. Fung Foundations of solid mechanics , 1965 .

[61]  Ahmed K. Noor,et al.  Nonlinear shell analysis via mixed isoparametric elements , 1977 .

[62]  John Argyris,et al.  Non-linear oscillations using the finite element technique , 1973 .

[63]  A. S. Veritec,et al.  Nonlinear Finite Element Analysis of Offshore Structures , 1986 .

[64]  G. Dhatt,et al.  Finite element large deflection analysis of shallow shells , 1976 .

[65]  Edward L. Wilson,et al.  Finite-Element Large Deflection Analysis of Plates , 1969 .

[66]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .