Scientific objectives of current and future WEGENER activities

Abstract The WEGENER group has promoted the development of scientific space-geodetic activities in the Mediterranean and in the European area for the last fifteen years and has contributed to the establishment of geodetic networks designed particularly for earth science research. WEGENER currently has three scientific objectives which are related to plate-boundary processes, sea-level and height changes, and postglacial rebound. In a full exploitation of the space-geodetic techniques, namely SLR, VLBI and GPS, the individual scientific projects do not only pursue these objectives but also contribute to improving and developing the observation techniques as well as the modelling theories. In the past, particularly SLR observations within WEGENER-MEDLAS have provided a fundamental contribution to determine the regional kinematics of the tectonic plates in the Mediterranean with high precision. With GPS, spatially denser site distributions are feasible, and in several WEGENER projects detailed studies of tectonically active areas were possible on the basis of repeated episodic GPS observations. Current projects associated with WEGENER are successful in separating crustal movements and absolute sea-level variations as well as in monitoring postglacial rebound. These tasks require high-precision height determinations, a problem central to all of the present WEGENER activities. In these projects, continuously occupied GPS sites are of increasing importance. Time series of heights observed with continuous GPS can be determined with a few centimeters RMS error thus enabling the reliable estimates of vertical rates over relatively short time intervals. Regional networks of continuous GPS sites are already providing results relevant, for example, for the study of postglacial rebound. The Mediterranean area is an extraordinary natural laboratory for the study of seismotectonic processes, and the wealth of observations acquired in previous WEGENER projects together with new space-geodetic observations will allow the test of geophysical hypotheses linking three-dimensional deformations of the Earth's surface to the dynamics of the Earth's interior. In particular, it is anticipated that WEGENER projects will aim at a test of the slab-detachment hypothesis. The complex investigations on sea-level fluctuations presently carried out at basin scale from the Strait of Gibraltar to the Black Sea make it possible to study the present and recent past interactions of ocean, atmosphere and solid Earth, as well as to develop appropriate models to assess future aspects.

[1]  Boudewijn Ambrosius,et al.  The role of GPs in the WEGENER project , 1998 .

[2]  G. J. Mets,et al.  Crustal deformations in the Mediterranean Area computed from SLR and GPS observations , 1996 .

[3]  W. R. Peltier,et al.  The LAGEOS constraint on deep mantle viscosity: Results from a new normal mode method for the inversion of viscoelastic relaxation spectra , 1985 .

[4]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[5]  G. Beutler GPS trends in precise terrestrial, airborne, and spaceborne applications : Boulder, Colorado, USA, July 3-4, 1995 , 1996 .

[6]  Bifrost GPS measurements to constrain geodynamic processes in Fennoscandia , 1996 .

[7]  D. Yuen,et al.  Time‐domain approach for the transient responses in stratified viscoelastic Earth models , 1995 .

[8]  A New Milestone in Large-Scale Ocean Dynamics: The First Three Years of the TOPEX/POSEIDON Mission , 1996 .

[9]  David E. Smith,et al.  Contributions of space geodesy to geodynamics : technology , 1993 .

[10]  M. Fang,et al.  The singularity mystery associated with a radially continuous Maxwell viscoelastic structure , 1995 .

[11]  W. Spakman,et al.  Structure and dynamics of subducted lithosphere in the Mediterranean region , 1992 .

[12]  H. Plag,et al.  Post-glacial rebound and present-day three-dimensional deformations , 1998 .

[13]  J. C. Savage No: The L.A. array is not ready for prime time , 1996 .

[14]  J. Jackson,et al.  Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey) , 1991 .

[15]  R. Girdler,et al.  A Geophysical Study of the Red Sea , 1964 .

[16]  Dario Albarello,et al.  Africa-Eurasia kinematics: main constraints and uncertainties , 1995 .

[17]  M. Heflin,et al.  Atmospheric pressure loading effects on Global Positioning System coordinate determinations , 1994 .

[18]  J. Mitrovica,et al.  Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America , 1996, Nature.

[19]  W. Sturges Large-Scale Coherence of Sea Level at Very Low Frequencies , 1987 .

[20]  Detection of vertical ground movements by sea-level changes in the Neapolitan volcanoes , 1998 .

[21]  J. Wahr,et al.  The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound , 1995 .

[22]  S. King Radial models of mantle viscosity: results from a genetic algorithm , 1995 .

[23]  John C. Ries,et al.  Progress in the determination of the gravitational coefficient of the Earth , 1992 .

[24]  Benjamin D. Santer,et al.  Ocean response to greenhouse warming , 1990, Nature.

[25]  Chester J. Koblinsky,et al.  Reflecting on the first three years of TOPEX/POSEIDON , 1996 .

[26]  K. Lambeck,et al.  Glacial rebound of the British Isles—III. Constraints on mantle viscosity , 1996 .

[27]  A. M. Tushingham Potential effects of ongoing postglacial adjustment on very long baseline interferometry measurements , 1991 .

[28]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 1. Theory , 1994 .

[29]  Bruce C. Douglas,et al.  GLOBAL SEA RISE: A REDETERMINATION , 1997 .

[30]  S. King The viscosity structure of the mantle , 1995 .

[31]  J. Mitrovica,et al.  Some comments on the 3-D impulse response of a Maxwell viscoelastic earth. , 1995 .

[32]  H. Plag,et al.  Estimations of a global sea level trend: limitations from the structure of the PSMSL global sea level data set , 1993 .

[33]  W. Peltier,et al.  A comparison of methods for the inversion of viscoelastic relaxation spectra , 1992 .

[34]  Erricos C. Pavlis Comparison of GPS S/C orbits determined from GPS and SLR tracking data , 1995 .

[35]  B. Richter,et al.  Sea level in the Mediterranean: a first step towards separating crustal movements and absolute sea-level variations , 1996 .

[36]  G. Spada,et al.  Analytical visco-elastic relaxation models , 1996 .

[37]  O. Sovers Vertical ocean loading amplitudes from VLBI measurements , 1994 .

[38]  J. Dewey Extensional collapse of orogens , 1988 .

[39]  Michael Watkins,et al.  Comparison of terrestrial reference frame velocities determined from SLR and VLBI , 1994 .

[40]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[41]  Wim Spakman,et al.  Tomographic images of the upper mantle below central Europe and the Mediterranean , 1990 .

[42]  Blending old and new approaches to regional GPS geodesy , 1997 .

[43]  R. Warrick,et al.  Sea level rise , 1990 .

[44]  R. Nerem,et al.  Characterization of Global Mean Sea Level Variations Observed by TOPEX/POSEIDON Using Empirical Orthogonal Functions , 1997 .

[45]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[46]  Robert D. van der Hilst,et al.  Travel-time tomography of the European-Mediterranean mantle down to 1400 km , 1993 .

[47]  K. Lambeck Glacial rebound of the British Isles—I. Preliminary model results , 1993 .

[48]  Z. Altamimi,et al.  Results and analysis of the ITRF94. , 1996 .

[49]  W. Spakman,et al.  The Hellenic Subduction Zone: A tomographic image and its geodynamic implications , 1988 .

[50]  Chester J. Koblinsky,et al.  A preliminary evaluation of ocean topography from the TOPEX/POSEIDON mission , 1994 .

[51]  Paul J. Tackley,et al.  Effects of strongly variable viscosity on three‐dimensional compressible convection in planetary mantles , 1996 .

[52]  Dennis D. McCarthy IERS Conventions (1996). , 1996 .

[53]  G. Veis,et al.  Trajectories of crustal deformation of western Greece from GPS observations 1989–1994 , 1996 .

[54]  P. Rogel,et al.  Variation of the mean sea level from TOPEX/POSEIDON data , 1995 .

[55]  H. Plag,et al.  On the possibilty of global and regional inversion of exogenic deformations for mechanical properties of the Earth's interior , 1996 .

[56]  Thomas A. Herring,et al.  Detection of atmospheric pressure loading using very long baseline interferometry measurements , 1994 .

[57]  W. Peltier,et al.  Global Sea Level Rise and the Greenhouse Effect: Might They Be Connected? , 1989, Science.

[58]  Rongjiang Wang Tidal Deformations on a Rotating, Spherically Asymmetric, Visco-elastic and Laterally Heterogeneous Earth , 1991 .

[59]  Claude Boucher,et al.  A European network for sea level and coastal land level monitoring , 1997 .

[60]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[61]  L. A. Array WILL A CONTINUOUS GPS ARRAY FOR L.A. HELP EARTHQUAKE HAZARD ASSESSMENT , 1996 .

[62]  P. Clarke,et al.  GPS networks for determining the accumulation of current crustal strain in Central Greece , 1995 .

[63]  Jan F. McGarry,et al.  Automated tracking for advanced satellite laser ranging systems , 1996, Defense, Security, and Sensing.

[64]  Kurt Lambeck,et al.  Glacial rebound of the British Isles—II. A high-resolution, high-precision model , 1993 .

[65]  K. Thompson Regression models for monthly mean sea level , 1979 .

[66]  K. Emery,et al.  Sea levels, land levels, and tide gauges , 1991 .

[67]  H. Kahle,et al.  Structure and dynamics of the Eurasian-African/Arabian plate boundary system: Objectives, tasks and resources of the WEGENER group , 1998 .

[68]  C. Rosenzweig,et al.  Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise , 1997 .

[69]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[70]  Yehuda Bock,et al.  Integrated satellite interferometry in Southern California , 1997 .

[71]  James Jackson,et al.  Active tectonics of the north and central Aegean Sea , 1991 .

[72]  G. Danuser,et al.  The strain field in northwestern Greece and the Ionian Islands: results inferred from GPS measurements , 1995 .

[73]  J. Overpeck,et al.  Hypothesized causes of decade-to-century-scale climate variability: Climate model results , 1993 .

[74]  kwang-yul kim,et al.  Towards development of a strategy for determining the origin of decadal-centennial scale climate variabiligy , 1993 .

[75]  David E. Smith,et al.  Horizontal crustal motion in the central and eastern Mediterranean inferred from satellite laser ranging measurements , 1994 .

[76]  E. Ivins,et al.  Present-day Antarctic Ice Mass Changes and Crustal Motion , 1995 .

[77]  M. Fang,et al.  A singularity free approach to post glacial rebound calculations , 1994 .

[78]  P. Valasek,et al.  Results of NFP 20 seismic reflection profiling along the Alpine section of the European Geotraverse (EGT) , 1991 .

[79]  J. Faller,et al.  Fourth International Comparison of Absolute Gravimeters , 1995 .

[80]  Richard G. Gordon,et al.  Closure of the Africa‐Eurasia‐North America Plate motion circuit and tectonics of the Gloria Fault , 1989 .

[81]  Hiromichi Tsuji,et al.  Coseismic crustal deformation from the 1994 Hokkaido‐Toho‐Oki Earthquake Monitored by a nationwide continuous GPS array in Japan , 1995 .

[82]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[83]  R. S. Nerem,et al.  Measuring global mean sea level variations using TOPEX/POSEIDON altimeter data , 1995 .

[84]  R. Glaus,et al.  RECENT RESULTS OF WATER VAPOR RADIOMETRY IN ASSESSING VERTICAL LITHOSPHERIC MOVEMENTS BY USING SPACE GEODETIC RADIOWAVE TECHNIQUES , 1995 .

[85]  Erricos C. Pavlis,et al.  Contemporary global horizontal crustal motion , 1994 .

[86]  Bruce C. Douglas,et al.  Global sea level rise , 1991 .

[87]  Hans-Peter Plag,et al.  Rayleigh-Taylor instabilities of a self-gravitating Earth , 1995 .

[88]  Ivan I. Mueller,et al.  The International GPS Service for Geodynamics (IGS): The Story , 1996 .

[89]  P. Pirazzoli Present and near-future global sea-level changes☆ , 1989 .

[90]  J. Merriam,et al.  Atmospheric pressure and gravity , 1992 .

[91]  D N Baron Reference Systems , 1992, Encyclopedia of GIS.

[92]  D. S. MacMillan,et al.  Atmospheric pressure loading parameters from very long baseline interferometry observations , 1994 .

[93]  W. J. Morgan,et al.  Horizontal motions due to post‐glacial rebound , 1990 .

[94]  B. C. Douglas,et al.  GLOBAL SEA LEVEL ACCELERATION , 1992 .

[95]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[96]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[97]  M. J. R. Wortel,et al.  Regional scale tectonic evolution and the seismic velocity structure of the lithosphere and upper mantle: The Mediterranean region , 1994 .

[98]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 2. Present‐day glacial isostatic adjustment , 1994 .

[99]  Jochen Zschau,et al.  Static deformations and gravity changes at the earth's surface due to atmospheric loading , 1985 .

[100]  T. van Dam,et al.  Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements , 1987 .

[101]  James Abshire,et al.  Atmospheric Refractivity Corrections in Satellite Laser Ranging , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[102]  J. Johansson,et al.  The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPOS network , 1998 .

[103]  P. Woodworth A search for accelerations in records of European mean sea level , 1990 .

[104]  Gerhard Beutler,et al.  The role of CSTG today and in the near future , 1996 .

[105]  Jeannot Trampert,et al.  High resolution global phase velocity distributions , 1996 .

[106]  W. Peltier,et al.  A complete formalism for the inversion of post-glacial rebound data: resolving power analysis , 1991 .

[107]  Detlef Wolf,et al.  Modelling of stresses in the Fennoscandian lithosphere induced by Pleistocene glaciations , 1998 .

[108]  P. Meijer,et al.  Temporal variation in the stress field of the Aegean Region , 1996 .

[109]  T. Baker Absolute sea level measurements, climate change and vertical crustal movements , 1993 .

[110]  F. Schwartz,et al.  Direct anthropogenic contributions to sea level rise in the twentieth century , 1994, Nature.

[111]  J. Wahr,et al.  Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth , 1995 .

[112]  G. Nolet,et al.  Shear‐wave velocity variations in the upper mantle beneath central Europe , 1994 .

[113]  W. Spakman,et al.  The P-wave velocity structure of the mantle below the Iberian Peninsula: evidence for subducted lithosphere below southern Spain , 1993 .

[114]  W. Prescott Will a continuous GPS array for L.A. help earthquake hazard assessment , 1996 .

[115]  Bob E. Schutz,et al.  Comparison of VLBI and SLR geocentric site coordinates , 1991 .

[116]  James P. Hauser,et al.  Effects of deviations from hydrostatic equilibrium on atmospheric corrections to satellite and lunar laser range measurements , 1989 .

[117]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[118]  T. James,et al.  A comparison of VLBI data with the Ice‐3G Glacial Rebound Model , 1993 .

[119]  S. Yoshioka,et al.  Three-dimensional numerical modeling of detachment of subducted lithosphere , 1995 .

[120]  John M. Wahr,et al.  Spectroscopic Analysis of Global Tide Gauge Sea Level Data , 1990 .

[121]  H. Philip,et al.  Modern tectonic stress field in the Mediterranean region: evidence for variation in stress directions at different scales , 1992 .

[122]  X. Le Pichon,et al.  Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics , 1995 .

[123]  H. Kahle,et al.  Active crustal deformation in the Marmara Sea Region, NW Anatolia, Inferred from GPS measurements , 1995 .

[124]  Briggs Gh The International Council of Scientific Unions , 1948, Nature.

[125]  Kenneth W. Hudnut,et al.  Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements , 1993, Nature.

[126]  W. Peltier,et al.  Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change , 1991 .

[127]  E. Kissling,et al.  Interpretation of tomographic images of uppermost mantle structure: Examples from the western and central alps , 1996 .

[128]  David E. Smith,et al.  Determination of the geocentric gravitational constant from laser ranging on near-Earth satellites , 1978 .

[129]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[130]  CHRISTIAN-D. SCHÖNWIESE J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.): Climate Change 1995, The Science of Climate Change , 1997 .