InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si Substrate

Building optoelectronic devices on a Si platform has been the engine behind the development of Si photonics. In particular, the integration of optical interconnects onto Si substrates allows the fabrication of complex optoelectronic circuits, potentially enabling chip-to-chip and system-to-system optical communications at greatly reduced cost and size relative to hybrid solutions. Although significant effort has been devoted to Si light generation and modulation technologies, efficient and electrically pumped Si light emitters have yet to be demonstrated. In contrast, III–V semiconductor devices offer high efficiency as optical sources. Monolithic integration of III–V on the Si platform would thus be an effective approach for realizing Si-based light sources. Here, we describe the first superluminescent light-emitting diode (SLD) monolithically grown on Si substrates. The fabricated two-section InAs/GaAs quantum-dot (QD) SLD produces a close-to-Gaussian emission spectrum of 114 nm centered at ∼1255 nm wav...

[1]  S. Matcher,et al.  Quantum dot selective area intermixing for broadband light sources. , 2012, Optics express.

[2]  Constance J. Chang-Hasnain Nanolasers Grown on Silicon , 2012 .

[3]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[4]  Diana L. Huffaker,et al.  Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon , 2006 .

[5]  Alwyn J. Seeds,et al.  1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2011 .

[6]  M. Hopkinson,et al.  High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents , 2005, IEEE Photonics Technology Letters.

[7]  Ki-Tae Jeong,et al.  Fiber-tothe-Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network , 2004 .

[8]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[9]  Chin-Lin Chen,et al.  Fiber-optic gyroscopes with broad-band sources , 1983 .

[10]  X. Lv,et al.  Improved Continuous-Wave Performance of Two-Section Quantum-Dot Superluminescent Diodes by Using Epi-Down Mounting Process , 2012, IEEE Photonics Technology Letters.

[11]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[12]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[14]  Z. G. Wang,et al.  Broadband external cavity tunable quantum dot lasers with low injection current density. , 2010, Optics express.

[15]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[16]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[17]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[18]  O. Wada,et al.  Hybrid Quantum Well/Quantum Dot Structure for Broad Spectral Bandwidth Emitters , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  A. Seeds,et al.  InAs/GaAs quantum-dot lasers monolithically grown on Si substrate , 2012, IEEE Photonics Conference 2012.

[20]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[21]  Chang-Hee Lee,et al.  Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network , 2004 .

[22]  M. Hopkinson,et al.  Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes. , 2010, Optics express.

[23]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[24]  M. Hopkinson,et al.  The effect of p doping in InAs quantum dot lasers , 2006 .

[25]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[26]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[27]  Siming Chen,et al.  Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure , 2012 .

[28]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[29]  Z.G. Wang,et al.  High-Power Quantum-Dot Superluminescent LED With Broadband Drive Current Insensitive Emission Spectra Using a Tapered Active Region , 2008, IEEE Photonics Technology Letters.

[30]  N. Yokoyama,et al.  ISLAND SIZE SCALING IN INAS/GAAS SELF-ASSEMBLED QUANTUM DOTS , 1998 .

[31]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[32]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[33]  Lorenzo Occhi,et al.  Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers , 2005 .

[34]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[35]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[36]  T. Drummond,et al.  Dislocation filtering in semiconductor superlattices with lattice-matched and lattice-mismatched layer materials , 1986 .