Learning in Gibbsian Fields: How Accurate and How Fast Can It Be?
暂无分享,去创建一个
[1] H. P.. Annales de l'Institut Henri Poincaré , 1931, Nature.
[2] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[3] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .
[4] Anil K. Jain,et al. Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Stuart Geman,et al. Statistical methods for tomographic image reconstruction , 1987 .
[6] Haluk Derin,et al. Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] L. Younes. Estimation and annealing for Gibbsian fields , 1988 .
[8] B. Gidas. Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for Gibbs Distributions , 1988 .
[9] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[10] Mark Jerrum,et al. Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..
[11] Anil K. Jain,et al. Markov random fields : theory and application , 1993 .
[12] B. Gidas,et al. A Variational Method for Estimating the Parameters of MRF from Complete or Incomplete Data , 1993 .
[13] Gerasimos Potamianos,et al. Partition function estimation of Gibbs random field images using Monte Carlo simulations , 1993, IEEE Trans. Inf. Theory.
[14] C. Geyer. On the Convergence of Monte Carlo Maximum Likelihood Calculations , 1994 .
[15] Gerasimos Potamianos,et al. Stochastic approximation algorithms for partition function estimation of Gibbs random fields , 1997, IEEE Trans. Inf. Theory.
[16] Song-Chun Zhu,et al. Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.
[17] Josiane Zerubia,et al. Maximum Likelihood Estimation of Markov Random Field Parameters Using Markov Chain Monte Carlo Algorithms , 1997, EMMCVPR.
[18] Jayant Shah. Minimax entropy and learning by diffusion , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).
[19] Song-Chun Zhu,et al. Equivalence of Julesz and Gibbs texture ensembles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[20] Song-Chun Zhu,et al. Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture , 2000, IEEE Trans. Pattern Anal. Mach. Intell..