Optimal groundwater remediation network design using selective membranes

This work deals with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means of emulsion pertraction technology using hollow fiber modules (HFMs). Superstructures that incorporate all possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater remediation network that allows treatment of groundwater to required levels and, also, a contaminant rich solution that can be used for further processing. The optimization of the superstructure is initially formulated as a nonconvex nonlinear programming (NLP) problem. This rigorous NLP model is simplified using some assumptions to get a simplified model which is globally optimized using a Lagrangean decomposition algorithm. This globally optimal solution is used as an initialization point for optimizing the rigorous NLP problem. Three cases involving different numbers of HFMs are studied to determine a cost optimized network with an optimal number of modules.

[1]  Inmaculada Ortiz,et al.  Separation and Recovery of Anionic Pollutants by the Emulsion Pertraction Technology. Remediation of Polluted Groundwaters with Cr(VI) , 2006 .

[2]  A. E. Jansen,et al.  The membrane contactor: Environmental applications and possibilities , 2001 .

[3]  B. Galán,et al.  Kinetic analysis of the simultaneous nondispersive extraction and back-extraction of chromium(VI) , 1996 .

[4]  C. Maranas,et al.  A Hierarchical Lagrangean Relaxation Procedure for Solving Midterm Planning Problems , 1999 .

[5]  Ignacio E. Grossmann,et al.  Optimal synthesis of an emulsion pertraction process for the removal of pollutant anions in industrial wastewater systems , 2007, Comput. Chem. Eng..

[6]  Robin Smith,et al.  Design of distributed effluent treatment systems , 1994 .

[7]  I. Grossmann,et al.  Optimal Design of Distributed Wastewater Treatment Networks , 1998 .

[8]  Ana M. Eliceche,et al.  Continuous operation of membrane processes for the treatment of industrial effluents , 2002 .

[9]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[10]  Ana M. Eliceche,et al.  Modeling and Optimization of an Emulsion Pertraction Process for Removal and Concentration of Cr(VI) , 2003 .

[11]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[12]  Günter Gruhn,et al.  Optimal design of non-dispersive solvent extraction processes , 2001 .

[13]  Ana M. Eliceche,et al.  Optimal operation of selective membrane separation processes for wastewater treatment , 2000 .

[14]  Nicholas I. M. Gould,et al.  Large-scale nonlinear constrained optimization , 1992 .

[15]  John M. Wiencek,et al.  Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor , 2000 .

[16]  Ana M. Eliceche,et al.  Optimal design of membrane processes for wastewater treatment and metal recovery , 2004, Comput. Chem. Eng..

[17]  Ana M. Eliceche,et al.  Minimum membrane area of an emulsion pertraction process for Cr(VI) removal and recovery , 2005, Comput. Chem. Eng..

[18]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[19]  Raquel Ibáñez Mendizábal,et al.  Método para la extracción y concentración simultáneas de compuestos de fases líquidas utilizando membranas microporosas. , 1999 .

[20]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[21]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[22]  Marshall L. Fisher,et al.  An Applications Oriented Guide to Lagrangian Relaxation , 1985 .

[23]  Inmaculada Ortiz,et al.  Membrane contactors for the recovery of metallic compounds modelling of copper recovery from WPO processes , 2005 .

[24]  Ignacio E. Grossmann,et al.  A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems , 2001 .

[25]  W. S. Winston Ho,et al.  New membrane technology for removal and recovery of chromium from waste waters , 2001 .

[26]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..