Impact of temperature on the efficiency of organic light emitting diodes

[1]  Karl Leo,et al.  Self-heating effects in organic semiconductor crossbar structures with small active area , 2012 .

[2]  S. Mehraeen,et al.  Ultralow doping in organic semiconductors: evidence of trap filling. , 2012, Physical review letters.

[3]  K. Gärtner,et al.  Self-heating, bistability, and thermal switching in organic semiconductors. , 2012, Physical review letters.

[4]  Stephen R. Forrest,et al.  Thermal properties of organic light-emitting diodes , 2012 .

[5]  R. Scholz,et al.  Quantitative description of charge-carrier transport in a white organic light-emitting diode , 2011 .

[6]  R. Coehoorn,et al.  Hole transport in polyfluorene-based sandwich-type devices : quantitative analysis of the role of energetic disorder , 2008 .

[7]  K. Walzer,et al.  Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices , 2008 .

[8]  Richard A. Klenkler,et al.  Temperature dependence of photoluminescence efficiency in doped and blended organic thin films , 2008 .

[9]  M. Hack,et al.  Power Consumption and Temperature Increase in Large Area Active-Matrix OLED Displays , 2008, Journal of Display Technology.

[10]  Karsten Walzer,et al.  Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters , 2007 .

[11]  Hany Aziz,et al.  Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices , 2004 .

[12]  Hany Aziz,et al.  Organic light emitting devices with enhanced operational stability at elevated temperatures , 2002 .

[13]  Yasunori Taga,et al.  Influence of temperature and drive current on degradation mechanisms in organic light-emitting diodes , 2002 .

[14]  Z. Popović,et al.  Temperature dependence of electroluminescence degradation in organic light emitting devices without and with a copper phthalocyanine buffer layer , 2002 .

[15]  Xiaoyuan Hou,et al.  Bubble formation in organic light-emitting diodes , 2000 .

[16]  Hiroshi Inada,et al.  Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials , 2000 .

[17]  Ming Lu,et al.  Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System , 2000 .

[18]  Y. Cao,et al.  Lifetime and degradation effects in polymer light-emitting diodes , 1999 .

[19]  Stephen R. Forrest,et al.  Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity , 1997 .

[20]  Shizuo Tokito,et al.  Temperature dependences of electroluminescent characteristics in the devices fabricated with novel triphenylamine derivatives , 1997 .

[21]  A. Okada,et al.  High‐temperature operation of an electroluminescent device fabricated using a novel triphenylamine derivative , 1996 .

[22]  K. Yoshihara,et al.  Role of hot molecules formed by internal conversion in UV single-photon and multiphoton chemistry , 1989 .

[23]  V. A. Yarborough,et al.  Temperature Dependence of Absorbance in Ultraviolet Spectra of Organic Molecules , 1954 .

[24]  Josef Salbeck,et al.  White Light Emission from Organic LEDs Utilizing Spiro Compounds with High‐Temperature Stability , 2000 .

[25]  H. Kanai,et al.  Operation characteristics and degradation of organic electroluminescent devices , 1998 .