Fast Approximation of Laplace‐Beltrami Eigenproblems

The spectrum and eigenfunctions of the Laplace‐Beltrami operator are at the heart of effective schemes for a variety of problems in geometry processing. A burden attached to these spectral methods is that they need to numerically solve a large‐scale eigenvalue problem, which results in costly precomputation. In this paper, we address this problem by proposing a fast approximation algorithm for the lowest part of the spectrum of the Laplace‐Beltrami operator. Our experiments indicate that the resulting spectra well‐approximate reference spectra, which are computed with state‐of‐the‐art eigensolvers. Moreover, we demonstrate that for different applications that comparable results are produced with the approximate and the reference spectra and eigenfunctions. The benefits of the proposed algorithm are that the cost for computing the approximate spectra is just a fraction of the cost required for numerically solving the eigenvalue problems, the storage requirements are reduced and evaluation times are lower. Our approach can help to substantially reduce the computational burden attached to spectral methods for geometry processing.

[1]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, ACM Trans. Graph..

[2]  Hujun Bao,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH Asia '08.

[3]  Hans-Peter Seidel,et al.  MovieReshape: tracking and reshaping of humans in videos , 2010, SIGGRAPH 2010.

[4]  Hujun Bao,et al.  Spectral Quadrangulation with Feature Curve Alignment and Element Size Control , 2014, ACM Trans. Graph..

[5]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[6]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[7]  Libor Vása,et al.  Compressing dynamic meshes with geometric laplacians , 2014, Comput. Graph. Forum.

[8]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[9]  Daniele Panozzo,et al.  libigl: prototyping geometry processing research in C++ , 2017, SIGGRAPH ASIA.

[10]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[11]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[12]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[13]  Christoph von Tycowicz,et al.  Modal shape analysis beyond Laplacian , 2012, Comput. Aided Geom. Des..

[14]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[15]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[16]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[17]  Giuseppe Patanè,et al.  Accurate and Efficient Computation of Laplacian Spectral Distances and Kernels , 2017, Comput. Graph. Forum.

[18]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[19]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[20]  Elmar Eisemann,et al.  Spectral Processing of Tangential Vector Fields , 2017, Comput. Graph. Forum.

[21]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[22]  Jernej Barbic,et al.  Interactive editing of deformable simulations , 2012, ACM Trans. Graph..

[23]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[24]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[25]  Alexander M. Bronstein,et al.  Fully Spectral Partial Shape Matching , 2017, Comput. Graph. Forum.

[26]  Yu Wang,et al.  Steklov Geometry Processing: An Extrinsic Approach to Spectral Shape Analysis , 2017, ArXiv.

[27]  Christian Schulz Interactive spacetime control of deformable objects and modal shape analysis beyond laplacian , 2013 .

[28]  Ameet Talwalkar,et al.  Large-scale SVD and manifold learning , 2013, J. Mach. Learn. Res..

[29]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[30]  Christoph von Tycowicz,et al.  Interactive spacetime control of deformable objects , 2012, ACM Trans. Graph..

[31]  Radu Horaud,et al.  Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[32]  Paolo Cignoni,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes , 2022 .

[33]  Jernej Barbic,et al.  Linear subspace design for real-time shape deformation , 2015, ACM Trans. Graph..

[34]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[35]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[36]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[37]  H. Weizsäcker,et al.  Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions , 2000 .

[38]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[39]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[40]  Marcus A. Magnor,et al.  Compressed Manifold Modes for Mesh Processing , 2014, Comput. Graph. Forum.

[41]  Elmar Eisemann,et al.  Modeling n-Symmetry Vector Fields using Higher-Order Energies , 2018, ACM Trans. Graph..

[42]  Klaus-Jürgen Bathe,et al.  The subspace iteration method - Revisited , 2013 .

[43]  Michael Wimmer,et al.  Reduced-order shape optimization using offset surfaces , 2015, ACM Trans. Graph..

[44]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[45]  Elmar Eisemann,et al.  Hyper-reduced projective dynamics , 2018, ACM Trans. Graph..

[46]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[47]  Doug L. James,et al.  Harmonic shells: a practical nonlinear sound model for near-rigid thin shells , 2009, ACM Trans. Graph..

[48]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[49]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[50]  Ralph R. Martin,et al.  Mesh saliency via spectral processing , 2014, ACM Trans. Graph..

[51]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[52]  Yoni Choukroun,et al.  Elliptic operator for shape analysis , 2016, ArXiv.

[53]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[54]  Yoni Choukroun,et al.  Schrödinger Operator for Sparse Approximation of 3D Meshes , 2017 .

[55]  Christoph von Tycowicz,et al.  Eigenmodes of Surface Energies for Shape Analysis , 2010, GMP.

[56]  Yin Yang,et al.  Expediting precomputation for reduced deformable simulation , 2015, ACM Trans. Graph..

[57]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[58]  Xavier Bresson,et al.  CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters , 2017, IEEE Transactions on Signal Processing.

[59]  Michael M. Bronstein,et al.  Localized Manifold Harmonics for Spectral Shape Analysis , 2017, Comput. Graph. Forum.

[60]  Young J. Kim,et al.  Interactive generalized penetration depth computation for rigid and articulated models using object norm , 2014, ACM Trans. Graph..

[61]  Klaus Hildebrandt,et al.  Compressed vibration modes of elastic bodies , 2017, Comput. Aided Geom. Des..

[62]  MalikJitendra,et al.  Spectral Grouping Using the Nyström Method , 2004 .

[63]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[64]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[65]  Derek Nowrouzezahrai,et al.  Learning hatching for pen-and-ink illustration of surfaces , 2012, TOGS.

[66]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[67]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[68]  Keenan Crane,et al.  A Dirac Operator for Extrinsic Shape Analysis , 2017, Comput. Graph. Forum.

[69]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[70]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[71]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[72]  M. Ben-Chen,et al.  A multi-resolution approach to heat kernels on discrete surfaces , 2010, SIGGRAPH 2010.

[73]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[74]  Doug L. James,et al.  Harmonic shells: a practical nonlinear sound model for near-rigid thin shells , 2009, SIGGRAPH 2009.

[75]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[76]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[77]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[78]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[79]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[80]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.