Principles Pertaining to the Metal-support Interaction on Metal Oxide Surfaces

The interaction between metals and oxides is an important key factor governing the electronic state and structure of the deposited metals and the physical and chemical properties of metal-oxide systems. This review describes our successful elucidation of two principles in the interaction between metals (single metal atom and also metal clusters) and metal oxide surfaces. Precise structures which have never before been obtained can be revealed using a combination of modern surface science techniques such as Polarization-dependent Total Reflection EXAFS, Scanning Tunneling Microscopy and Kelvin Force Probe Microscopy. Our results demonstrate that surface oxygen atoms and the metal oxide geometric arrangement play a key role in both metal immobilization and self-regulated growth on metal oxide surfaces.

[1]  M. Nomura,et al.  Origin of Self-Regulated Cluster Growth on the TiO2(110) Surface Studied Using Polarization-Dependent Total Reflection Fluorescence XAFS , 2008 .

[2]  M. Nomura,et al.  Preparation of atomically dispersed Cu species on a TiO2 (110) surface premodified with an organic compound , 2007 .

[3]  H. Onishi,et al.  Local work function of Pt clusters vacuum-deposited on a TiO2 surface. , 2006, The journal of physical chemistry. B.

[4]  H. Onishi,et al.  Probe microscope observation of platinum atoms deposited on the TiO2(110)-(1 x 1) surface. , 2006, The journal of physical chemistry. B.

[5]  K. Asakura,et al.  Self-regulated Ni cluster formation on the TiO , 2006 .

[6]  M. Nomura,et al.  Structure of low coverage Ni atoms on the TiO2(1 1 0) surface – Polarization dependent total-reflection fluorescence EXAFS study , 2006 .

[7]  Koji Tanaka,et al.  Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) , 2005 .

[8]  Donna A. Chen,et al.  Adsorbate-induced dissociation of metal clusters: TiO2(110)-supported Cu and Ni clusters exposed to oxygen gas , 2004 .

[9]  H. Uetsuka,et al.  Individual Na Adatoms on TiO2(110)-(1×1) Surface Observed Using Kelvin Probe Force Microscope , 2004 .

[10]  T. Shido,et al.  A local structure of low coverage Ni species on the α-Al2O3 (0 0 0 1) surface: a polarization dependent EXAFS study , 2004 .

[11]  T. Shido,et al.  Three-Dimensional Structure Analyses of Cu Species Dispersed on TiO2(110) Surfaces Studied by Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure (PTRF-XAFS) , 2003 .

[12]  K. Fukui,et al.  Self-limiting growth of Pt nanoparticles from MeCpPtMe3 adsorbed on TiO2110 studied by scanning tunneling microscopy. , 2003, Physical review letters.

[13]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[14]  H. Idriss,et al.  Dark and photoreactions of acetates on TiO2(110) single crystal surface , 2002 .

[15]  Hansong Cheng,et al.  Interaction between Catalyst and Support. 1. Low Coverage of Co and Ni at the Silica Surface , 2001 .

[16]  G. Thornton,et al.  Orientation of carboxylates on TiO2(110) , 2001 .

[17]  V. Dravid,et al.  First-principles study of initial stage of Ni thin-film growth on a TiO_2 (110) surface , 1999 .

[18]  Q. Guo,et al.  The effect of adsorbate–adsorbate interaction on the structure of chemisorbed overlayers on TiO2(110) , 1999 .

[19]  G. Pacchioni,et al.  A quantum-chemical study of Pd atoms and dimers supported on TiO2(110) and their interaction with CO , 1999 .

[20]  M. Newton,et al.  FOURIER TRANSFORM REFLECTION-ABSORPTION IR SPECTROSCOPY STUDY OF FORMATE ADSORPTION ON TIO2(110) , 1999 .

[21]  Y. Iwasawa,et al.  Polarization-Dependent Total-Reflection Fluorescence XAFS Study of Mo Oxides on a Rutile TiO2(110) Single Crystal Surface , 1998 .

[22]  D. Goodman,et al.  Scanning tunneling microscopy studies of the TiO 2 ( 110 ) surface: Structure and the nucleation growth of Pd , 1997 .

[23]  I. Cocks,et al.  The orientation of acetate on a TiO2(110) surface , 1997 .

[24]  M. A. Henderson Complexity in the Decomposition of Formic Acid on the TiO2(110) Surface , 1997 .

[25]  H. Onishi,et al.  Temperature-Jump STM Observation of Reaction Intermediate on Metal−Oxide Surfaces , 1996 .

[26]  K. Tomishige,et al.  PTRF X-ray absorption fine structure as a new technique for catalyst characterization , 1996 .

[27]  José A. Martín-Gago,et al.  The interaction of Pt with TiO2(110) surfaces: a comparative XPS, UPS, ISS, and ESD study , 1996 .

[28]  Pan,et al.  Growth mode of ultrathin copper overlayers on TiO2(110). , 1993, Physical review. B, Condensed matter.

[29]  H. Onishi,et al.  Photoelectron spectroscopic study of clean and CO adsorbed NI/TiO2(110) interfaces , 1990 .