Principles Pertaining to the Metal-support Interaction on Metal Oxide Surfaces
暂无分享,去创建一个
H. Onishi | K. Asakura | W. Chun | Shushi Suzuki | A. Sasahara | Y. Koike
[1] M. Nomura,et al. Origin of Self-Regulated Cluster Growth on the TiO2(110) Surface Studied Using Polarization-Dependent Total Reflection Fluorescence XAFS , 2008 .
[2] M. Nomura,et al. Preparation of atomically dispersed Cu species on a TiO2 (110) surface premodified with an organic compound , 2007 .
[3] H. Onishi,et al. Local work function of Pt clusters vacuum-deposited on a TiO2 surface. , 2006, The journal of physical chemistry. B.
[4] H. Onishi,et al. Probe microscope observation of platinum atoms deposited on the TiO2(110)-(1 x 1) surface. , 2006, The journal of physical chemistry. B.
[5] K. Asakura,et al. Self-regulated Ni cluster formation on the TiO , 2006 .
[6] M. Nomura,et al. Structure of low coverage Ni atoms on the TiO2(1 1 0) surface – Polarization dependent total-reflection fluorescence EXAFS study , 2006 .
[7] Koji Tanaka,et al. Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) , 2005 .
[8] Donna A. Chen,et al. Adsorbate-induced dissociation of metal clusters: TiO2(110)-supported Cu and Ni clusters exposed to oxygen gas , 2004 .
[9] H. Uetsuka,et al. Individual Na Adatoms on TiO2(110)-(1×1) Surface Observed Using Kelvin Probe Force Microscope , 2004 .
[10] T. Shido,et al. A local structure of low coverage Ni species on the α-Al2O3 (0 0 0 1) surface: a polarization dependent EXAFS study , 2004 .
[11] T. Shido,et al. Three-Dimensional Structure Analyses of Cu Species Dispersed on TiO2(110) Surfaces Studied by Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure (PTRF-XAFS) , 2003 .
[12] K. Fukui,et al. Self-limiting growth of Pt nanoparticles from MeCpPtMe3 adsorbed on TiO2110 studied by scanning tunneling microscopy. , 2003, Physical review letters.
[13] Ulrike Diebold,et al. The surface science of titanium dioxide , 2003 .
[14] H. Idriss,et al. Dark and photoreactions of acetates on TiO2(110) single crystal surface , 2002 .
[15] Hansong Cheng,et al. Interaction between Catalyst and Support. 1. Low Coverage of Co and Ni at the Silica Surface , 2001 .
[16] G. Thornton,et al. Orientation of carboxylates on TiO2(110) , 2001 .
[17] V. Dravid,et al. First-principles study of initial stage of Ni thin-film growth on a TiO_2 (110) surface , 1999 .
[18] Q. Guo,et al. The effect of adsorbate–adsorbate interaction on the structure of chemisorbed overlayers on TiO2(110) , 1999 .
[19] G. Pacchioni,et al. A quantum-chemical study of Pd atoms and dimers supported on TiO2(110) and their interaction with CO , 1999 .
[20] M. Newton,et al. FOURIER TRANSFORM REFLECTION-ABSORPTION IR SPECTROSCOPY STUDY OF FORMATE ADSORPTION ON TIO2(110) , 1999 .
[21] Y. Iwasawa,et al. Polarization-Dependent Total-Reflection Fluorescence XAFS Study of Mo Oxides on a Rutile TiO2(110) Single Crystal Surface , 1998 .
[22] D. Goodman,et al. Scanning tunneling microscopy studies of the TiO 2 ( 110 ) surface: Structure and the nucleation growth of Pd , 1997 .
[23] I. Cocks,et al. The orientation of acetate on a TiO2(110) surface , 1997 .
[24] M. A. Henderson. Complexity in the Decomposition of Formic Acid on the TiO2(110) Surface , 1997 .
[25] H. Onishi,et al. Temperature-Jump STM Observation of Reaction Intermediate on Metal−Oxide Surfaces , 1996 .
[26] K. Tomishige,et al. PTRF X-ray absorption fine structure as a new technique for catalyst characterization , 1996 .
[27] José A. Martín-Gago,et al. The interaction of Pt with TiO2(110) surfaces: a comparative XPS, UPS, ISS, and ESD study , 1996 .
[28] Pan,et al. Growth mode of ultrathin copper overlayers on TiO2(110). , 1993, Physical review. B, Condensed matter.
[29] H. Onishi,et al. Photoelectron spectroscopic study of clean and CO adsorbed NI/TiO2(110) interfaces , 1990 .