Soft Biometric Attributes in the Wild: Case Study on Gender Classification

Soft biometrics has become an active field of research, as it provides useful attributes to assist in recognition systems. Its fusion with strong traits may serve to achieve reasonable recognition rates in less cooperative scenarios. These attributes can also be used to speed up database searches, or to describe an anonymous subject within a demographic group. Agreeing with recent research trends on the need to evaluate biometric systems using “in the wild” datasets, the current state-of-the-art in the emerging field of soft biometrics is presented, together with proposals and results on the particular problem of gender classification “in the wild”.

[1]  Michele Nappi,et al.  Face Recognition in Adverse Conditions , 2014 .

[2]  José Martínez Sotoca,et al.  On the Importance of the Grid Size for Gender Recognition using Full Body Static Images , 2011, VISAPP.

[3]  Andrea Bottino,et al.  Detecting siblings in image pairs , 2013, The Visual Computer.

[4]  Subhransu Maji,et al.  Describing people: A poselet-based approach to attribute classification , 2011, 2011 International Conference on Computer Vision.

[5]  Hong Liu,et al.  Gender Classification Using Pyramid Segmentation for Unconstrained Back-facing Video Sequences , 2015, ACM Multimedia.

[6]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[7]  Huizhong Chen,et al.  The Hidden Sides of Names—Face Modeling with First Name Attributes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Xiaoou Tang,et al.  Learning Social Relation Traits from Face Images , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  Andrew Harrison,et al.  Marketing avatars revisited: A commentary on facial recognition and embodied representations in consumer profiling , 2014 .

[10]  Shengcai Liao,et al.  Learning Face Representation from Scratch , 2014, ArXiv.

[11]  Jean-Luc Dugelay,et al.  Bag of soft biometrics for person identification , 2010, Multimedia Tools and Applications.

[12]  Ming-Hsuan Yang,et al.  Learning Gender with Support Faces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Sébastien Marcel,et al.  Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint, and Face Recognition , 2014, IEEE Transactions on Image Processing.

[14]  Heitor Silvério Lopes,et al.  Extracting human attributes using a convolutional neural network approach , 2015, Pattern Recognit. Lett..

[15]  Anil K. Jain,et al.  Soft Biometric Traits for Personal Recognition Systems , 2004, ICBA.

[16]  Javier Lorenzo-Navarro,et al.  On the Use of Simple Geometric Descriptors Provided by RGB-D Sensors for Re-Identification , 2013, Sensors.

[17]  Anil K. Jain,et al.  Face Recognition Performance: Role of Demographic Information , 2012, IEEE Transactions on Information Forensics and Security.

[18]  Genny Tortora,et al.  EGA — Ethnicity, gender and age, a pre-annotated face database , 2012, 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings.

[19]  Jiwen Lu,et al.  The FG 2015 Kinship Verification in the Wild Evaluation , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[20]  Domingo Mery,et al.  Automatic facial attribute analysis via adaptive sparse representation of random patches , 2015, Pattern Recognit. Lett..

[21]  Jiwen Lu,et al.  Kinship verification in the wild: The first kinship verification competition , 2014, IEEE International Joint Conference on Biometrics.

[22]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[23]  Ioan Marius Bilasco,et al.  Boosting gender recognition performance with a fuzzy inference system , 2015, Expert Syst. Appl..

[24]  David J. Kriegman,et al.  From Bikers to Surfers: Visual Recognition of Urban Tribes , 2013, BMVC.

[25]  Paul C. Miller,et al.  Full body image feature representations for gender profiling , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[26]  Bir Bhanu,et al.  Foreword - Biometrics in the Wild 2015 , 2015, FG.

[27]  Patrick J. Grother,et al.  Face Recognition Vendor Test (FRVT) - Performance of Automated Gender Classification Algorithms , 2015 .

[28]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[29]  Arun Ross,et al.  Multimodal biometrics: An overview , 2004, 2004 12th European Signal Processing Conference.

[30]  Ming Shao,et al.  Genealogical face recognition based on UB KinFace database , 2011, CVPR 2011 WORKSHOPS.

[31]  Jean-Luc Dugelay,et al.  Minimalistic CNN-based ensemble model for gender prediction from face images , 2016, Pattern Recognit. Lett..

[32]  Joydeep Ghosh,et al.  Face Detection on Distorted Images Augmented by Perceptual Quality-Aware Features , 2014, IEEE Transactions on Information Forensics and Security.

[33]  T. Poggio,et al.  I think I know that face... , 1996, Nature.

[34]  Luís A. Alexandre Gender recognition: A multiscale decision fusion approach , 2010, Pattern Recognit. Lett..

[35]  Bruce A. Draper,et al.  On the effectiveness of soft biometrics for increasing face verification rates , 2015, Comput. Vis. Image Underst..

[36]  Ze-Nian Li,et al.  Gender Recognition Using Complexity-Aware Local Features , 2014, 2014 22nd International Conference on Pattern Recognition.

[37]  Claudio A. Perez,et al.  Gender Classification Based on Fusion of Different Spatial Scale Features Selected by Mutual Information From Histogram of LBP, Intensity, and Shape , 2013, IEEE Transactions on Information Forensics and Security.

[38]  Pierluigi Carcagnì,et al.  A study on different experimental configurations for age, race, and gender estimation problems , 2015, EURASIP J. Image Video Process..

[39]  Anil K. Jain,et al.  Biometrics of Next Generation: An Overview , 2010 .

[40]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[41]  Danny Reinberg,et al.  A human RNA polymerase II complex associated with SRB and DNA-repair proteins , 1996, Nature.

[42]  Guodong Guo,et al.  A framework for joint estimation of age, gender and ethnicity on a large database , 2014, Image Vis. Comput..

[43]  Javier Lorenzo-Navarro,et al.  Fusion of Holistic and Part Based Features for Gender Classification in the Wild , 2015, ICIAP Workshops.

[44]  T. Valentine,et al.  An Investigation of the Contact Hypothesis of the Own-race Bias in Face Recognition , 1995 .

[45]  Michele Nappi,et al.  Robust face recognition after plastic surgery using region-based approaches , 2015, Pattern Recognit..

[46]  Stefanos Zafeiriou,et al.  The First Facial Landmark Tracking in-the-Wild Challenge: Benchmark and Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[47]  D. Keeble,et al.  The Significance of Hair for Face Recognition , 2012, PloS one.

[48]  Sébastien Marcel,et al.  Within- and cross- database evaluations for face gender classification via befit protocols , 2014, 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP).

[49]  Matti Pietikäinen,et al.  Combining appearance and motion for face and gender recognition from videos , 2009, Pattern Recognit..

[50]  A. Young,et al.  Understanding face recognition. , 1986, British journal of psychology.

[51]  Guodong Guo,et al.  Gender from Body: A Biologically-Inspired Approach with Manifold Learning , 2009, ACCV.

[52]  Vittorio Murino,et al.  Custom Pictorial Structures for Re-identification , 2011, BMVC.

[53]  Arun Ross,et al.  Evaluation of gender classification methods on thermal and near-infrared face images , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[54]  Terrance E. Boult,et al.  Fusing with context: A Bayesian approach to combining descriptive attributes , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[55]  Yun Fu,et al.  Gender recognition from body , 2008, ACM Multimedia.

[56]  Javier Galbally,et al.  Children Gender Recognition Under Unconstrained Conditions Based on Contextual Information , 2014, 2014 22nd International Conference on Pattern Recognition.

[57]  Tamás D. Gedeon,et al.  Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol , 2014, ICMI.

[58]  Bok-Min Goi,et al.  A review of facial gender recognition , 2015, Pattern Analysis and Applications.

[59]  Hai Tao,et al.  Evaluating Appearance Models for Recognition, Reacquisition, and Tracking , 2007 .

[60]  Hugo Proença,et al.  Quis-Campi: Extending in the Wild Biometric Recognition to Surveillance Environments , 2015, ICIAP Workshops.

[61]  Javier Lorenzo-Navarro,et al.  Improving Gender Classification Accuracy in the Wild , 2013, CIARP.

[62]  Nello Cristianini,et al.  Learning to classify gender from four million images , 2015, Pattern Recognit. Lett..

[63]  José Miguel Buenaposada,et al.  Revisiting Linear Discriminant Techniques in Gender Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Tal Hassner,et al.  Effective face frontalization in unconstrained images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Bing Li,et al.  Gender classification by combining clothing, hair and facial component classifiers , 2012, Neurocomputing.

[66]  Mark S. Nixon,et al.  Imputing human descriptions in semantic biometrics , 2010, MiFor '10.

[67]  Julian Fiérrez,et al.  Soft Biometrics and Their Application in Person Recognition at a Distance , 2014, IEEE Transactions on Information Forensics and Security.

[68]  Thomas B. Moeslund,et al.  On soft biometrics , 2015, Pattern Recognit. Lett..

[69]  Ioan Marius Bilasco,et al.  Cross-Database Evaluation of Normalized Raw Pixels for Gender Recognition under Unconstrained Settings , 2014, 2014 22nd International Conference on Pattern Recognition.

[70]  Mahir Faik Karaaba,et al.  Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[71]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[72]  Richa Singh,et al.  Harnessing social context for improved face recognition , 2015, 2015 International Conference on Biometrics (ICB).

[73]  Javier Lorenzo-Navarro,et al.  Gender Classification in Large Databases , 2012, CIARP.

[74]  Anil K. Jain,et al.  Facial marks: Soft biometric for face recognition , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[75]  Gang Hua,et al.  Labeled Faces in the Wild: A Survey , 2016 .

[76]  Richard Russell,et al.  A Sex Difference in Facial Contrast and its Exaggeration by Cosmetics , 2009, Perception.

[77]  Kai Oliver Arras,et al.  Real-time full-body human gender recognition in (RGB)-D data , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[78]  Wei Gao,et al.  Face Gender Classification on Consumer Images in a Multiethnic Environment , 2009, ICB.

[79]  Karl Ricanek,et al.  Investigating the Periocular-Based Face Recognition Across Gender Transformation , 2014, IEEE Transactions on Information Forensics and Security.

[80]  Shumeet Baluja,et al.  Boosting Sex Identification Performance , 2005, International Journal of Computer Vision.

[81]  Tsuhan Chen,et al.  Clothing cosegmentation for recognizing people , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[82]  David Masip,et al.  On the Use of External Face Features for Identity Verification , 2006, J. Multim..

[83]  Javier Lorenzo-Navarro,et al.  Automatic clothes segmentation for soft biometrics , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[84]  JEAN-MARC FELLOUS,et al.  PII: S0042-6989(97)00010-2 , 2003 .

[85]  Huizhong Chen,et al.  Describing Clothing by Semantic Attributes , 2012, ECCV.

[86]  José Miguel Buenaposada,et al.  Robust gender recognition by exploiting facial attributes dependencies , 2014, Pattern Recognit. Lett..

[87]  Javier Lorenzo-Navarro,et al.  Multi-scale score level fusion of local descriptors for gender classification in the wild , 2016, Multimedia Tools and Applications.

[88]  Daniel González-Jiménez,et al.  Single- and cross- database benchmarks for gender classification under unconstrained settings , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[89]  Salman Yussof,et al.  Integration of multiple soft biometrics for human identification , 2015, Pattern Recognit. Lett..

[90]  Anil K. Jain,et al.  On a taxonomy of facial features , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[91]  Terrance E. Boult,et al.  Detecting and classifying scars, marks, and tattoos found in the wild , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[92]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[93]  Roberto Paredes,et al.  Local Deep Neural Networks for gender recognition , 2016, Pattern Recognit. Lett..

[94]  Marcello Ferro,et al.  Gait and Anthropometric Profile Biometrics: A Step Forward , 2012 .

[95]  Franc Solina,et al.  Modelling In-Store Consumer Behaviour Using Machine Learning and Digital Signage Audience Measurement Data , 2014, VAAM@ICPR.

[96]  Tamás D. Gedeon,et al.  Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[97]  Shree K. Nayar,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Describable Visual Attributes for Face Verification and Image Search , 2022 .

[98]  Giovanni Maria Farinella,et al.  Gender recognition: Methods, datasets and results , 2015, 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[99]  Tal Hassner,et al.  Age and gender classification using convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[100]  Tsuhan Chen,et al.  Understanding images of groups of people , 2009, CVPR.

[101]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[102]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  Arun Ross,et al.  Soft biometrics for surveillance: an overview , 2013 .

[104]  Shree K. Nayar,et al.  Attribute and simile classifiers for face verification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[105]  Yun Fu,et al.  Is gender recognition affected by age? , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[106]  RoliFabio,et al.  Group-specific face verification using soft biometrics , 2009 .

[107]  Sébastien Marcel,et al.  Audio-visual gender recognition in uncontrolled environment using variability modeling techniques , 2014, IEEE International Joint Conference on Biometrics.

[108]  Caifeng Shan,et al.  Learning local binary patterns for gender classification on real-world face images , 2012, Pattern Recognit. Lett..

[109]  Hani Mahdi,et al.  Gender Classification Using Mixture of Experts from Low Resolution Facial Images , 2013, MCS.

[110]  Javier Lorenzo-Navarro,et al.  On using periocular biometric for gender classification in the wild , 2016, Pattern Recognit. Lett..

[111]  Maher Awad,et al.  Age and gender recognition using informative features of various types , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[112]  R. D. de Haan,et al.  The eye of the beholder: inter-rater agreement among experts on psychogenic jerky movement disorders , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[113]  M K Unnikrishnan,et al.  How is the individuality of a face recognized? , 2009, Journal of theoretical biology.

[114]  Julian Fiérrez,et al.  Quality Measures in Biometric Systems , 2012, IEEE Security & Privacy.

[115]  Roope Raisamo,et al.  Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[116]  Derek Hoiem,et al.  Family Member Identification from Photo Collections , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[117]  Bir Bhanu,et al.  Guest Editorial Special Issue on Facial Biometrics in the Wild , 2014 .

[118]  Sanjay Kumar Singh,et al.  Biometric Recognition for Pet Animal , 2014 .

[119]  Arun Ross,et al.  Predicting gender and weight from human metrology using a copula model , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[120]  Michele Nappi,et al.  MEG: Texture operators for multi-expert gender classification , 2017, Comput. Vis. Image Underst..

[121]  Henry T. F. b. Rhodes,et al.  Alphonse Bertillon, Father of Scientific Detection , 2013 .

[122]  Pedro García-Sevilla,et al.  Face gender classification: A statistical study when neutral and distorted faces are combined for training and testing purposes , 2014, Image Vis. Comput..

[123]  Anil K. Jain,et al.  A Case Study of Automated Face Recognition: The Boston Marathon Bombings Suspects , 2013, Computer.

[124]  Anil K. Jain,et al.  Biometric Systems: Technology, Design and Performance Evaluation , 2004 .

[125]  Gian Luca Marcialis,et al.  Group-specific face verification using soft biometrics , 2009, J. Vis. Lang. Comput..

[126]  Gaurav Sharma,et al.  Learning discriminative spatial representation for image classification , 2011, BMVC.

[127]  H. Kühl,et al.  Animal biometrics: quantifying and detecting phenotypic appearance. , 2013, Trends in ecology & evolution.

[128]  Tal Hassner,et al.  Age and Gender Estimation of Unfiltered Faces , 2014, IEEE Transactions on Information Forensics and Security.