On intuitionistic fuzzy rough sets and their topological structures

In this paper, lower and upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined. Properties of intuitionistic fuzzy approximation operators are examined. Relationships between intuitionistic fuzzy rough set approximations and intuitionistic fuzzy topologies are then discussed. It is proved that the set of all lower approximation sets based on an intuitionistic fuzzy reflexive and transitive approximation space forms an intuitionistic fuzzy topology; and conversely, for an intuitionistic fuzzy rough topological space, there exists an intuitionistic fuzzy reflexive and transitive approximation space such that the topology in the intuitionistic fuzzy rough topological space is just the set of all lower approximation sets in the intuitionistic fuzzy reflexive and transitive approximation space. That is to say, there exists an one-to-one correspondence between the set of all intuitionistic fuzzy reflexive and transitive approximation spaces and the set of all intuitionistic fuzzy rough topological spaces. Finally, intuitionistic fuzzy pseudo-closure operators in the framework of intuitionistic fuzzy rough approximations are investigated.

[1]  J. Kortelainen On relationship between modified sets, topological spaces and rough sets , 1994 .

[2]  Andrzej Skowron,et al.  The rough sets theory and evidence theory , 1990 .

[3]  QinKeyun,et al.  On the topological properties of fuzzy rough sets , 2005 .

[4]  Jiye Liang,et al.  Information entropy, rough entropy and knowledge granulation in incomplete information systems , 2006, Int. J. Gen. Syst..

[5]  Helmut Thiele On axiomatic characterization of fuzzy approximation operators. III. The fuzzy diamond and fuzzy box based cases , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[6]  Yiyu Yao Combination of Rough and Fuzzy Sets Based on α-Level Sets , 1997 .

[7]  Chris Cornelis,et al.  Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge , 2003 .

[8]  C. J. V. Rijsbergen,et al.  Rough Sets, Fuzzy Sets and Knowledge Discovery , 1994, Workshops in Computing.

[9]  Daowu Pei,et al.  A generalized model of fuzzy rough sets , 2005, Int. J. Gen. Syst..

[10]  Polska Akademia Nauk,et al.  Bulletin of the Polish Academy of Sciences. Mathematics. , 1983 .

[11]  Chris Cornelis,et al.  Intuitionistic Fuzzy Relational Images , 2005, Computational Intelligence for Modelling and Prediction.

[12]  M. H. Ghanim Pseudo-closure operators in fuzzy topological spaces , 1991 .

[13]  Lei Zhou,et al.  On generalized intuitionistic fuzzy rough approximation operators , 2008, Inf. Sci..

[14]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..

[15]  John N. Mordeson,et al.  Rough set theory applied to (fuzzy) ideal theory , 2001, Fuzzy Sets Syst..

[16]  Anna Maria Radzikowska,et al.  Characterisation of main classes of fuzzy relations using fuzzy modal operators , 2005, Fuzzy Sets Syst..

[17]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[18]  S. K. Samanta,et al.  Topology of interval-valued intuitionistic fuzzy sets , 2001, Fuzzy Sets Syst..

[19]  Barbara Marszal-Paszek,et al.  Evidence Theory and VPRS model , 2003, RSKD.

[20]  Wen-Xiu Zhang,et al.  An axiomatic characterization of a fuzzy generalization of rough sets , 2004, Inf. Sci..

[21]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[22]  Mustafa Demirci,et al.  Axiomatic theory of intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[23]  Dimiter Vakarelov,et al.  A model logic for similarity relations in pawlak knowledge representation systems , 1991, Fundam. Informaticae.

[24]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[25]  J. Recasens,et al.  UPPER AND LOWER APPROXIMATIONS OF FUZZY SETS , 2000 .

[26]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[27]  Zheng Pei,et al.  On the topological properties of fuzzy rough sets , 2005, Fuzzy Sets Syst..

[28]  S. Nanda,et al.  Fuzzy rough sets , 1992 .

[29]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[30]  A. Wasilewska,et al.  Conditional knowledge representation systems -model for an implementation , 1989 .

[31]  Yiyu Yao,et al.  Relational Interpretations of Neigborhood Operators and Rough Set Approximation Operators , 1998, Inf. Sci..

[32]  Yee Leung,et al.  On characterizations of (I, J)-fuzzy rough approximation operators , 2005, Fuzzy Sets Syst..

[33]  Marek Chuchro,et al.  On Rough Sets in Topological Boolean Algebras , 1993, RSKD.

[34]  Zdzislaw Pawlak,et al.  Probability, Truth and Flow Graph , 2003, RSKD.

[35]  Yee Leung,et al.  An uncertainty measure in partition-based fuzzy rough sets , 2005, Int. J. Gen. Syst..

[36]  Humberto Bustince,et al.  Structures on intuitionistic fuzzy relations , 1996, Fuzzy Sets Syst..

[37]  Zongben Xu,et al.  Rough Set Models on Two universes , 2004, Int. J. Gen. Syst..

[38]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[39]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[40]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[41]  Ladislav J. Kohout,et al.  Semantics of implication operators and fuzzy relational products , 1980 .

[42]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[43]  Yee Leung,et al.  Connections between rough set theory and Dempster-Shafer theory of evidence , 2002, Int. J. Gen. Syst..

[44]  William Zhu,et al.  Topological approaches to covering rough sets , 2007, Inf. Sci..

[45]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[46]  Wei-Zhi Wu,et al.  A Study on Relationship Between Fuzzy Rough Approximation Operators and Fuzzy Topological Spaces , 2005, FSKD.

[47]  Yiyu Yao,et al.  Interpretation of Belief Functions in The Theory of Rough Sets , 1998, Inf. Sci..

[48]  Wei-Zhi Wu,et al.  Constructive and axiomatic approaches of fuzzy approximation operators , 2004, Inf. Sci..

[49]  C. L. Chang,et al.  Fuzzy topological spaces , 1968 .

[50]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[51]  Yee Leung,et al.  On Generalized Rough Fuzzy Approximation Operators , 2006, Trans. Rough Sets.

[52]  Wei-Zhi Wu,et al.  Neighborhood operator systems and approximations , 2002, Inf. Sci..

[53]  Nehad N. Morsi,et al.  Axiomatics for fuzzy rough sets , 1998, Fuzzy Sets Syst..

[54]  Dogan Çoker,et al.  An introduction to intuitionistic fuzzy topological spaces , 1997, Fuzzy Sets Syst..

[55]  Dogan Çoker,et al.  Fuzzy rough sets are intuitionistic L-fuzzy sets , 1998, Fuzzy Sets Syst..

[56]  John N. Mordeson,et al.  Fuzzy Topological Spaces , 2001 .

[57]  Etienne Kerre,et al.  On the cuts of intuitionistic fuzzy compositions , 2003 .

[58]  Danish Nadeem,et al.  Rough Intuitionistic Fuzzy Sets , 2002, JCIS.

[59]  Tsau Young Lin,et al.  Rough Approximate Operators: Axiomatic Rough Set Theory , 1993, RSKD.

[60]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[61]  T. Medhat,et al.  Rough set theory for topological spaces , 2005, Int. J. Approx. Reason..

[62]  A. Wiweger On topological rough sets , 1989 .