The Erdös-Hajnal Conjecture for Long Holes and Antiholes

Erdos and Hajnal conjectured that for every graph $H$, there exists a constant $c_H$ such that every graph $G$ on $n$ vertices which does not contain an induced copy of $H$ has a clique or a stable set of size $n^{c_H}$. We prove that for every $k$ there exists $c_k>0$ such that every graph $G$ on $n$ vertices not inducing a cycle of length at least $k$ nor its complement contains a clique or a stable set of size at least $n^{c_k}$.