Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects

Optically-addressable solid-state spin defects are promising candidates for storing and manipulating quantum information using their long coherence ground state manifold; individual defects can be entangled using photon-photon interactions, offering a path toward large scale quantum photonic networks. Quantum computing protocols place strict limits on the acceptable photon losses in the system. These low-loss requirements cannot be achieved without photonic engineering, but are attainable if combined with state-of-the-art nanophotonic technologies. However, most materials that host spin defects are challenging to process: as a result, the performance of quantum photonic devices is orders of magnitude behind that of their classical counterparts. Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap, since it hosts promising optically-addressable spin defects and can be processed into SiC-on-insulator for scalable, integrated photonics. In this Perspective, we discuss recent progress toward the development of scalable quantum photonic technologies based on solid state spins in silicon carbide, and discuss current challenges and future directions.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  Physical Review Letters 63 , 1989 .

[5]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[6]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[7]  M. Bruel,et al.  Silicon carbide on insulator formation by the Smart-Cut® process , 1997 .

[8]  M. V. Rao,et al.  Donor ion-implantation doping into SiC , 1999 .

[9]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[10]  E. Janzén,et al.  Silicon vacancy related defect in 4H and 6H SiC , 2000 .

[11]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[12]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[13]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[14]  B.J. Eggleton,et al.  Local tuning of photonic crystal cavities using chalcogenide glasses , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[15]  Xiaodong Yang,et al.  Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[16]  Xiaodong Yang,et al.  Digital resonance tuning of high-Q/V m silicon photonic crystal nanocavities by atomic layer deposition , 2008 .

[17]  T. Kondo,et al.  Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide , 2009 .

[18]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[19]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[20]  Rogier Verberk,et al.  Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy , 2011 .

[21]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[22]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[23]  A. Fiore,et al.  Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation , 2011 .

[24]  T. Asano,et al.  Demonstration of two-dimensional photonic crystals based on silicon carbide. , 2011, Optics express.

[25]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[26]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[27]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[28]  W. Marsden I and J , 2012 .

[29]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[30]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[31]  Polytype control of spin qubits in silicon carbide , 2013, Nature communications.

[32]  Photonic crystal cavities in cubic (3C) polytype silicon carbide films. , 2013, Optics express.

[33]  M. Lipson,et al.  High Q SiC microresonators. , 2013, Optics Express.

[34]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[35]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[36]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[37]  J. Bowers,et al.  Ultra‐low loss waveguide platform and its integration with silicon photonics , 2014 .

[38]  Jonathan Y. Lee,et al.  High Q silicon carbide microdisk resonator , 2014 .

[39]  Yoshinori Tanaka,et al.  Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity. , 2014, Optics letters.

[40]  D. Awschalom,et al.  Electrically Driven Spin Resonance in Silicon Carbide Color Centers , 2013, 1310.4844.

[41]  D. Awschalom,et al.  Electrically and mechanically tunable electron spins in silicon carbide color centers. , 2013, Physical review letters.

[42]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[43]  G. Astakhov,et al.  Room-temperature quantum microwave emitters based on spin defects in silicon carbide , 2013, Nature Physics.

[44]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[45]  V. Davydov,et al.  Optically Addressable Silicon Vacancy-Related Spin Centers in Rhombic Silicon Carbide with High Breakdown Characteristics and ENDOR Evidence of Their Structure. , 2015, Physical review letters.

[46]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[47]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[48]  J. Pflaum,et al.  Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide , 2014, Nature Communications.

[49]  G. Astakhov,et al.  All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide , 2015, 1511.04663.

[50]  D. Awschalom,et al.  Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble , 2015, Science Advances.

[51]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[52]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[53]  G. Astakhov,et al.  High-Precision Angle-Resolved Magnetometry with Uniaxial Quantum Centers in Silicon Carbide , 2015, 1505.00176.

[54]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[55]  D. E. Chang,et al.  Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals , 2014, Nature Photonics.

[56]  Nan Zhao,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature Materials.

[57]  Takeshi Ohshima,et al.  Isolated electron spins in silicon carbide with millisecond coherence times. , 2014, Nature materials.

[58]  M. Lipson,et al.  Optical nonlinearities in high-confinement silicon carbide waveguides. , 2015, Optics letters.

[59]  Optical Polarization of Nuclear Spins in Silicon Carbide. , 2015, Physical review letters.

[60]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[61]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[62]  D. Awschalom,et al.  Suppressing Spectral Diffusion of Emitted Photons with Optical Pulses. , 2015, Physical review letters.

[63]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[64]  Alberto Politi,et al.  Cavity-enhanced measurements of defect spins in silicon carbide , 2015, 1510.02202.

[65]  D. Awschalom,et al.  High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC. , 2016, Physical review letters.

[66]  Mihir K. Bhaskar,et al.  A fiber-coupled diamond quantum nanophotonic interface , 2016, 1612.05285.

[67]  S. Economou,et al.  Spin-photon entanglement interfaces in silicon carbide defect centers , 2016, Nanotechnology.

[68]  S. Economou,et al.  Silicon vacancy center in 4 H -SiC: Electronic structure and spin-photon interfaces , 2015, 1507.05091.

[69]  Antoine Browaeys,et al.  An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays , 2016, Science.

[70]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[71]  U. Gerstmann,et al.  Evidence for near-infrared photoluminescence of nitrogen vacancy centers in 4 H -SiC , 2016 .

[72]  N. Motta,et al.  Graphene growth on silicon carbide: A review , 2016 .

[73]  U. Gerstmann,et al.  NV centers in 3 C ,4 H , and 6 H silicon carbide: A variable platform for solid-state qubits and nanosensors , 2016 .

[74]  T. Ohshima,et al.  Locking of electron spin coherence above 20 ms in natural silicon carbide , 2016, 1602.05775.

[75]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[76]  Jonathan M. Kindem,et al.  Nanophotonic rare-earth quantum memory with optically controlled retrieval , 2017, Science.

[77]  Susumu Noda,et al.  Photonic crystal nanocavity with a Q factor exceeding eleven million. , 2017, Optics express.

[78]  Paul V. Klimov,et al.  Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface , 2017 .

[79]  David O. Bracher,et al.  Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center , 2016, Proceedings of the National Academy of Sciences.

[80]  William F. Koehl,et al.  Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN , 2017 .

[81]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[82]  Á. Gali,et al.  Characterization and formation of NV centers in 3C, 4H, and 6H SiC: An ab initio study CHARACTERIZATION and FORMATION of NV CENTERS ... CSÓRÉ, von BARDELEBEN, CANTIN, and GALI , 2017 .

[83]  Donovan Buterakos,et al.  Deterministic generation of all-photonic quantum repeaters from solid-state emitters , 2016, 1612.03869.

[84]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[85]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[86]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[87]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[88]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[89]  T. Ohshima,et al.  Three-Dimensional Proton Beam Writing of Optically Active Coherent Vacancy Spins in Silicon Carbide. , 2017, Nano letters.

[90]  Guanzhong Wang,et al.  Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide , 2016, 1610.03978.

[91]  Alexander Y. Piggott,et al.  Fabrication-constrained nanophotonic inverse design , 2016, Scientific Reports.

[92]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[93]  Pavel Sekatski,et al.  A gated quantum dot far in the strong-coupling regime of cavity-QED at optical frequencies , 2018, 1812.08662.

[94]  Steven Chu,et al.  Cavity-Enhanced Raman Emission from a Single Color Center in a Solid. , 2018, Physical review letters.

[95]  T. Asano,et al.  High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide , 2018, Applied Physics Letters.

[96]  A. Adibi,et al.  High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. , 2018, Optics express.

[97]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[98]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[99]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[100]  A. S. Zibrov,et al.  Photon-mediated interactions between quantum emitters in a diamond nanocavity , 2018, Science.

[101]  Philip Walther,et al.  Scalable spin–photon entanglement by time-to-polarization conversion , 2018, npj Quantum Information.

[102]  Sophia E. Economou,et al.  Photonic graph state generation from quantum dots and color centers for quantum communications , 2018, Physical Review B.

[103]  B. Eble,et al.  Nitrogen vacancy center in cubic silicon carbide: A promising qubit in the 1.5μm spectral range for photonic quantum networks , 2018, Physical Review B.

[104]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[105]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[106]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[107]  N. T. Son,et al.  Optical Properties of Vanadium in 4 H Silicon Carbide for Quantum Technology , 2019, Physical Review Applied.

[108]  N. T. Son,et al.  High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide , 2018, Nature Communications.

[109]  P. Stroganov,et al.  Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. , 2019, Physical review letters.

[110]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[111]  Kevin J. Satzinger,et al.  Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics , 2018, Nature Physics.

[112]  T. Ohshima,et al.  Electrically driven optical interferometry with spins in silicon carbide , 2019, Science Advances.

[113]  T. You,et al.  High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. , 2019, Optics express.

[114]  Dries Vercruysse,et al.  Inverse-designed diamond photonics , 2018, Nature Communications.

[115]  H. B. Weber,et al.  Stark tuning of the Silicon Vacancy in Silicon Carbide. , 2019, Nano letters.

[116]  Pavel Sekatski,et al.  A gated quantum dot strongly coupled to an optical microcavity , 2019, Nature.

[117]  Mihir K. Bhaskar,et al.  Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices , 2019, Physical Review X.

[118]  Dries Vercruysse,et al.  Nanophotonic inverse design with SPINS: Software architecture and practical considerations , 2019, Applied Physics Reviews.

[119]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[120]  J. Zi,et al.  Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum , 2019, 1909.12618.

[121]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[122]  N. T. Son,et al.  Identification of divacancy and silicon vacancy qubits in 6H-SiC , 2019, Applied Physics Letters.

[123]  O. Painter,et al.  Phononic bandgap nano-acoustic cavity with ultralong phonon lifetime , 2019, 1901.04129.

[124]  Quentin Wilmart,et al.  Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits , 2019, Journal of Physics D: Applied Physics.

[125]  Q. Lin,et al.  Photon-level tuning of photonic nanocavities , 2019, Optica.

[126]  R. Myers-Ward,et al.  Resonant Optical Spin Initialization and Readout of Single Silicon Vacancies in 4H - SiC , 2018, Physical Review Applied.

[127]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[128]  Sang-Yun Lee,et al.  Spectrally stable defect qubits with no inversion symmetry for robust spin-to-photon interface , 2018, Physical Review Applied.

[129]  Dries Vercruysse,et al.  Inverse Design and Demonstration of Broadband Grating Couplers , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[130]  D. Bluvstein,et al.  Extending the Quantum Coherence of a Near-Surface Qubit by Coherently Driving the Paramagnetic Surface Environment. , 2019, Physical review letters.

[131]  A. Dibos,et al.  Optical quantum nondemolition measurement of a single rare earth ion qubit , 2019, Nature Communications.

[132]  Susumu Noda,et al.  Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide , 2019, Optica.

[133]  Martin J Booth,et al.  Laser Writing of Scalable Single Color Centers in Silicon Carbide. , 2019, Nano letters.

[134]  T. T. Tran,et al.  Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride , 2019, Applied Physics Letters.

[135]  N. T. Son,et al.  Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions , 2019, Nature Communications.

[136]  N. T. Son,et al.  Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. , 2019, Nano letters.

[137]  Joseph P. Heremans,et al.  Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide , 2019, npj Quantum Information.

[138]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[139]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[140]  D. Hunger,et al.  Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity , 2018, Physical Review B.

[141]  C Kasper,et al.  Excitation and coherent control of spin qudit modes in silicon carbide at room temperature , 2019, Nature Communications.

[142]  A. Adibi,et al.  High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform , 2019 .

[143]  M. Doherty,et al.  Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide , 2018, Physical Review B.

[144]  M. Fejer,et al.  Optical parametric oscillation in silicon carbide nanophotonics , 2020, Optica.

[145]  T. You,et al.  Wafer-scale 4H-silicon carbide-on-insulator (4H–SiCOI) platform for nonlinear integrated optical devices , 2020, Optical Materials.

[146]  Alison E. Rugar,et al.  Narrow-Linewidth Tin-Vacancy Centers in a Diamond Waveguide , 2020, ACS Photonics.

[147]  T. Ohshima,et al.  Universal coherence protection in a solid-state spin qubit , 2020, Science.

[148]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[149]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[150]  T. Kippenberg,et al.  Monolithic piezoelectric control of soliton microcombs , 2019, Nature.

[151]  T. Ohshima,et al.  Influence of Irradiation on Defect Spin Coherence in Silicon Carbide , 2019, Physical Review Applied.

[152]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[153]  Mouktik Raha,et al.  Optical quantum nondemolition measurement of a single rare earth ion qubit , 2020, Nature Communications.

[154]  Dries Vercruysse,et al.  Dispersion Engineering With Photonic Inverse Design , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[155]  David O. Bracher,et al.  Purcell enhancement of a single silicon carbide color center with coherent spin control. , 2020, Nano letters.

[156]  D. Awschalom,et al.  Vanadium spin qubits as telecom quantum emitters in silicon carbide , 2019, Science Advances.

[157]  M. Lukin,et al.  One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces , 2019, Physical Review X.

[158]  N. T. Son,et al.  Vibronic States and Their Effect on the Temperature and Strain Dependence of Silicon-Vacancy Qubits in 4H - SiC , 2020, Physical Review Applied.

[159]  Jonathan M. Kindem,et al.  Control and single-shot readout of an ion embedded in a nanophotonic cavity , 2019, Nature.

[160]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[161]  Y. Ota,et al.  Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots , 2019, APL Photonics.

[162]  N. T. Son,et al.  Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide , 2020, Nature Communications.

[163]  N. T. Son,et al.  Spectrally reconfigurable quantum emitters enabled by optimized fast modulation , 2020, 2003.12591.

[164]  Peter L. McMahon,et al.  A quantum annealer with fully programmable all-to-all coupling via Floquet engineering , 2019, npj Quantum Information.

[165]  N. T. Son,et al.  Developing silicon carbide for quantum spintronics , 2020 .

[166]  J. Barreto,et al.  An integrated optical modulator operating at cryogenic temperatures , 2020, Nature Materials.

[167]  N. Kalhor,et al.  Efficient Single-Photon Detection with 7.7 ps Time Resolution for Photon-Correlation Measurements , 2020, ACS Photonics.

[168]  Alexandre Blais,et al.  Quantum information processing and quantum optics with circuit quantum electrodynamics , 2020, Nature Physics.

[169]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[170]  N. T. Son,et al.  Entanglement and control of single nuclear spins in isotopically engineered silicon carbide , 2020, Nature Materials.

[171]  G. Guo,et al.  Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. , 2019, Physical review letters.

[172]  A. Boretti,et al.  Silicon carbide color centers for quantum applications , 2020, Journal of Physics: Photonics.

[173]  Local vibrational modes of Si vacancy spin qubits in SiC , 2020, 2002.00067.

[174]  Matteo A. C. Rossi,et al.  IBM Q Experience as a versatile experimental testbed for simulating open quantum systems , 2019, npj Quantum Information.

[175]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[176]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[177]  P. Alam ‘W’ , 2021, Composites Engineering.

[178]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[179]  A. Wieck,et al.  A bright and fast source of coherent single photons , 2020, Nature Nanotechnology.

[180]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[181]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[182]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[183]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[184]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[185]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[186]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.