Experimental characterization of the stick/sliding transition in a precision mechanical system using the third order sinusoidal input describing function

In this paper a new, non-parametric frequency domain based measurement technique is introduced that enables capturing the stick to gross sliding transition of a mechanical system with dry friction. The technique is an extension of the Sinusoidal Input Describing Function theory (SIDF) to Higher Order Describing Functions. The resulting Higher Order Sinusoidal Input Describing Functions (HOSIDF) relate the magnitude and phase of the higher harmonics in the periodic response of a non-linear system to the magnitude and phase of the sinusoidal excitation. A non-linear mechanical system with dry friction is analyzed using both the classical Frequency Response Function (FRF) technique and the newly developed HOSIDF technique. Where the FRF technique is not able to identify the stick/sliding transition of the system, the third order SIDF clearly displays this transition. From the third order SIDF the pre-sliding displacement of the system is determined. The first order SIDF is used to generate information about the resonance frequency of the system due to the friction-induced stiffness. From the pre-sliding displacement and the friction-induced stiffness, the friction force is calculated which must be present in the stick-phase. Validation with force measurements shows excellent agreement.

[1]  Kwang-Joon Kim,et al.  FRICTION IDENTIFICATION IN A SIGHT STABILISATION SYSTEM AT LOW VELOCITIES , 1997 .

[2]  Carlos Canudas de Wit,et al.  Adaptive friction compensation with partially known dynamic friction model , 1997 .

[3]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[4]  Masayoshi Tomizuka,et al.  Robust motion controller design for high-accuracy positioning systems , 1996, IEEE Trans. Ind. Electron..

[5]  S. A. Billings,et al.  Spectral analysis for non-linear systems, Part I: Parametric non-linear spectral analysis , 1989 .

[6]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[7]  M.J.G. van de Molengraft,et al.  Friction induced hunting limit cycles: an event mapping approach , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[8]  L. Chua,et al.  Frequency domain analysis of nonlinear systems: general theory , 1979 .

[9]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[10]  H. A. Sherif,et al.  Non-linear Identification Of Mechanical Systems With Dynamic Dry Friction , 1994 .

[11]  Stephen A. Billings,et al.  Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions , 1989 .

[12]  S. A. Billings,et al.  Spectral analysis for non-linear systems, part III: Case study examples , 1990 .

[13]  Rha Ron Hensen,et al.  Controlled mechanical systems with friction , 2002 .

[14]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[15]  M Maarten Steinbuch,et al.  Friction induced limit cycling : hunting , 2001 .

[16]  Leon O. Chua,et al.  Measuring Volterra kernels , 1983 .

[17]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[18]  de Ag Bram Jager IMPROVING THE TRACKING PERFORMANCE OF MECHANICAL SYSTEMS BY ADAPTIVE EXTENDED FRICTION COMPENSATION , 1993 .

[19]  Maarten Steinbuch,et al.  Frequency domain identification of dynamic friction model parameters , 2002, IEEE Trans. Control. Syst. Technol..

[20]  Maarten Steinbuch,et al.  Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model , 2003, Autom..

[21]  Henk Nijmeijer,et al.  Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System , 2004 .

[22]  Devi D Putra,et al.  Control of limit cycling in frictional mechanical systems , 2004 .

[23]  P.W.J.M. Nuij,et al.  Measurement technique to determine modal parameters of friction induced resonance , 2002 .

[24]  L. Chua,et al.  Measuring Volterra kernels (II) , 1989 .

[25]  M Maarten Steinbuch,et al.  Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses , 2006 .

[26]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[27]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[28]  David Rees,et al.  Frequency domain analysis of nonlinear systems driven by multiharmonic signals , 2004, IEEE Transactions on Instrumentation and Measurement.

[29]  Jan Swevers,et al.  Harmonic analysis of a mass subject to hysteretic friction: experimentalvalidation , 2002 .

[30]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[31]  Robert B. Randall Frequency Analysis , 1987 .

[32]  D. Rees,et al.  Nonlinear disturbance errors in system identification using multisine test signals , 1993 .