Usability of the P300 Speller: Towards a More Sustainable Brain-Computer Interface

[1]  Cuntai Guan,et al.  High performance P300 speller for brain-computer interface , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[2]  Lei Ding,et al.  Motor imagery classification by means of source analysis for brain–computer interface applications , 2004, Journal of neural engineering.

[3]  H. Flor,et al.  The thought translation device (TTD) for completely paralyzed patients. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[4]  E. Donchin,et al.  The contingent negative variation and the late positive wave of the average evoked potential. , 1970, Electroencephalography and clinical neurophysiology.

[5]  T W Picton,et al.  Temporal and sequential probability in evoked potential studies. , 1981, Canadian journal of psychology.

[6]  J. Wolpaw,et al.  A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance , 2006, Biological Psychology.

[7]  Dana Chisnell,et al.  Handbook of Usability Testing , 2009 .

[8]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[9]  E Donchin,et al.  Brain-computer interface technology: a review of the first international meeting. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[10]  G. McCarthy,et al.  On the influence of task relevance and stimulus probability on event-related-potential components. , 1977, Electroencephalography and clinical neurophysiology.

[11]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[12]  E Gordon,et al.  Is the target-to-target interval a critical determinant of P3 amplitude? , 1999, Psychophysiology.

[13]  E Donchin,et al.  The mental prosthesis: assessing the speed of a P300-based brain-computer interface. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[14]  Sean J. O'Connor,et al.  P300 topography of amplitude/latency correlations , 2005, Brain Topography.

[15]  John Polich,et al.  P300 from a single-stimulus paradigm: auditory intensity and tone frequency effects , 1997, Biological Psychology.

[16]  A. Sambeth,et al.  With long intervals, inter-stimulus interval is the critical determinant of the human P300 amplitude , 2004, Neuroscience Letters.

[17]  Touradj Ebrahimi,et al.  Brain-computer interface in multimedia communication , 2003, IEEE Signal Process. Mag..

[18]  M. Onofrj,et al.  Reappearance of event-related P3 potential in locked-in syndrome. , 1996, Brain research. Cognitive brain research.

[19]  F. Babiloni,et al.  The Estimation of Cortical Activity for Brain-Computer Interface: Applications in a Domotic Context , 2007, Comput. Intell. Neurosci..

[20]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[21]  E. Donchin,et al.  EEG-based communication: prospects and problems. , 1996, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[22]  Fazlollah M. Reza,et al.  Introduction to Information Theory , 2004, Lecture Notes in Electrical Engineering.

[23]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.