Learning Shape Correspondence for n-D curves

We present a learning method that introduces explicit knowledge into the shape correspondence problem. Given two input curves to be matched, our approach establishes a dense correspondence field between them, where the characteristics of the matching field closely resemble those in an a priori learning set. We build a shape distance matrix from the values of a shape descriptor computed at every point along the curves. This matrix embeds the correspondence problem in a highly expressive and redundant construct and provides the basis for a pattern matching strategy for curve matching. We selected the previously introduced observed transport measure as a shape descriptor, as its properties make it particularly amenable to the matching problem. Synthetic and real examples are presented along with discussions of the robustness and applications of the technique.

[1]  Timothy F. Cootes,et al.  A Minimum Description Length Approach to Statistical Shape Modelling , 2001 .

[2]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[3]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[4]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[6]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[7]  Lawrence H. Staib,et al.  Shape-based 3D surface correspondence using geodesics and local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Hiromasa Suzuki,et al.  Metamorphosis of Arbitrary Triangular Meshes , 2000, IEEE Computer Graphics and Applications.

[9]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[10]  Remco C. Veltkamp,et al.  Shape matching: similarity measures and algorithms , 2001, Proceedings International Conference on Shape Modeling and Applications.

[11]  F. Ulupinar,et al.  Inferring shape from contour for curved surfaces , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[12]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[13]  F ATTNEAVE,et al.  The quantitative study of shape and pattern perception. , 1956, Psychological bulletin.

[14]  Isabelle Herlin,et al.  Curves matching using geodesic paths , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[15]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[16]  Philip N. Klein,et al.  Constructing 2D curve atlases , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[17]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[18]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[19]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  L. Zusne Visual perception of form , 1970 .

[21]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[22]  A. Kelemen,et al.  Three-dimensional model-based segmentation of brain MRI , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[23]  J. J. Koenderink,et al.  Dynamic shape , 1986, Biological Cybernetics.

[24]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[25]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[26]  A. Ardeshir Goshtasby,et al.  Description and Discrimination of Planar Shapes Using Shape Matrices , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[28]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[29]  Peter J. van Otterloo,et al.  A contour-oriented approach to shape analysis , 1991 .

[30]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[31]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[32]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[33]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[34]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[35]  Daphna Weinshall,et al.  Flexible Syntactic Matching of Curves and Its Application to Automatic Hierarchical Classification of Silhouettes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  E Goldmeier,et al.  Similarity in visually perceived forms. , 1972, Psychological issues.

[37]  Alain Trouvé,et al.  Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals , 2000, ECCV.

[38]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[39]  D. Marr A theory for cerebral neocortex , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[41]  Alain Pitiot,et al.  Learning Object Correspondences with the Observed Transport Shape Measure , 2003, IPMI.

[42]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[43]  Stéphane Lavallée,et al.  Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery , 1999, Medical Image Anal..

[44]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Jerry L. Prince,et al.  Image registration based on boundary mapping , 1996, IEEE Trans. Medical Imaging.

[47]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).