Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.

Bimodal, auditory-visual neurons in the optic tectum of the barn owl are sharply tuned for sound source location. The auditory receptive fields (RFs) of these neurons are restricted in space primarily as a consequence of their tuning for interaural time differences and interaural level differences across broad ranges of frequencies. In this study, we examined the extent to which frequency-specific features of early auditory experience shape the auditory spatial tuning of these neurons. We manipulated auditory experience by implanting in one ear canal an acoustic filtering device that altered the timing and level of sound reaching the eardrum in a frequency-dependent fashion. We assessed the auditory spatial tuning at individual tectal sites in normal owls and in owls raised with the filtering device. At each site, we measured a family of auditory RFs using broadband sound and narrowband sounds with different center frequencies both with and without the device in place. In normal owls, the narrowband RFs for a given site all included a common region of space that corresponded with the broadband RF and aligned with the site's visual RF. Acute insertion of the filtering device in normal owls shifted the locations of the narrowband RFs away from the visual RF, the magnitude and direction of the shifts depending on the frequency of the stimulus. In contrast, in owls that were raised wearing the device, narrowband and broadband RFs were aligned with visual RFs so long as the device was in the ear but not after it was removed, indicating that auditory spatial tuning had been adaptively altered by experience with the device. The frequency tuning of tectal neurons in device-reared owls was also altered from normal. The results demonstrate that experience during development adaptively modifies the representation of auditory space in the barn owl's optic tectum in a frequency-dependent manner.

[1]  K. E. Binns,et al.  The Maturation of the Superior Collicular Map of Auditory Space in the Guinea Pig is Disrupted by Developmental Auditory Deprivation , 1990, The European journal of neuroscience.

[2]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[3]  M. Konishi,et al.  Neuronal and behavioral sensitivity to binaural time differences in the owl , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  E. Knudsen,et al.  Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification. , 1994, Journal of neurophysiology.

[5]  J. E. Hind,et al.  Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. , 1990, The Journal of the Acoustical Society of America.

[6]  E. Knudsen Auditory and visual maps of space in the optic tectum of the owl , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  A. R. Palmer,et al.  A monaural space map in the guinea-pig superior colliculus , 1985, Hearing Research.

[8]  E. Knudsen,et al.  Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  E. Knudsen Experience alters the spatial tuning of auditory units in the optic tectum during a sensitive period in the barn owl , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A J King,et al.  Monaural and binaural spectrum level cues in the ferret: acoustics and the neural representation of auditory space. , 1994, Journal of neurophysiology.

[11]  E I Knudsen,et al.  Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Eric I. Knudsen,et al.  Maps versus clusters: different representations of auditory space in the midbrain and forebrain , 1999, Trends in Neurosciences.

[13]  C. Blakemore,et al.  Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus , 1988, Nature.

[14]  E. Knudsen,et al.  Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  E I Knudsen,et al.  Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. , 1992, The Journal of the Acoustical Society of America.

[16]  K. E. Binns,et al.  The Maturation of the Superior Collicular Map of Auditory Space in the Guinea Pig is Disrupted by Developmental Visual Deprivation , 1990, The European journal of neuroscience.

[17]  E I Knudsen,et al.  Visual instruction of the neural map of auditory space in the developing optic tectum. , 1991, Science.

[18]  J. C. Middlebrooks,et al.  Binaural mechanisms of spatial tuning in the cat's superior colliculus distinguished using monaural occlusion. , 1987, Journal of neurophysiology.

[19]  Klaus Hartung,et al.  Head-related transfer functions of the barn owl: measurement and neural responses , 1998, Hearing Research.

[20]  Simon Carlile,et al.  Directional properties of the auditory periphery in the guinea pig , 1987, Hearing Research.

[21]  E I Knudsen,et al.  Neural maps of interaural time and intensity differences in the optic tectum of the barn owl , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  S D Esterly,et al.  Monaural occlusion alters sound localization during a sensitive period in the barn owl , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  E. Young,et al.  Pinna-based spectral cues for sound localization in cat , 1992, Hearing Research.

[24]  J. C. Middlebrooks,et al.  Changes in external ear position modify the spatial tuning of auditory units in the cat's superior colliculus. , 1987, Journal of neurophysiology.

[25]  E. Knudsen Auditory properties of space-tuned units in owl's optic tectum. , 1984, Journal of neurophysiology.

[26]  P F Knudsen,et al.  Space‐Mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.