Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation

Abstract In the current paper, an error estimate has been proposed to find a second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. The convergence order of the proposed method is O ( τ 2 + h 2 ) . The numerical results show the efficiency of the new technique.

[1]  J. P. Roop Variational Solution of the Fractional Advection Dispersion Equation , 2004 .

[2]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and Their Applications $(I)$ , 2014 .

[3]  Fawang Liu,et al.  A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain , 2015, J. Comput. Phys..

[4]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[5]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[6]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and their Applications (III) , 2016 .

[7]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[8]  Changpin Li,et al.  Finite difference methods with non-uniform meshes for nonlinear fractional differential equations , 2016, J. Comput. Phys..

[9]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[10]  Minghua Chen,et al.  A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation , 2016, Appl. Math. Lett..

[11]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[12]  Ali H. Bhrawy,et al.  A quadrature tau method for fractional differential equations with variable coefficients , 2011, Appl. Math. Lett..

[13]  Mehdi Dehghan,et al.  Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation , 2017, Appl. Math. Lett..

[14]  R. Metzler,et al.  Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation , 2002 .

[15]  Teodor M. Atanackovic,et al.  Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod , 2010, 1005.3379.

[16]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[17]  P. N. Nelson,et al.  The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests , 2015 .

[18]  Mehdi Dehghan,et al.  An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch–Torrey equations , 2018, Applied Numerical Mathematics.

[19]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[20]  M. Zaky,et al.  An improved collocation method for multi-dimensional spacetime variable-order fractional Schrdinger equations , 2017 .

[21]  Michele Caputo,et al.  Diffusion with space memory modelled with distributed order space fractional differential equations , 2003 .

[22]  Mehdi Dehghan,et al.  A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation , 2018, Comput. Math. Appl..

[23]  Fawang Liu,et al.  A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain , 2018, Appl. Math. Lett..

[24]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[25]  Weihua Deng,et al.  Discretized fractional substantial calculus , 2013, 1310.3086.

[26]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[27]  E. Barkai,et al.  Tempered fractional Feynman-Kac equation: Theory and examples. , 2016, Physical review. E.

[28]  Mridula Garg,et al.  Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables , 2014 .

[29]  Fawang Liu,et al.  A novel finite volume method for the Riesz space distributed-order diffusion equation , 2017, Comput. Math. Appl..

[30]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[32]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[33]  Michele Caputo,et al.  Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[34]  Francesco Mainardi,et al.  The Two Forms of Fractional Relaxation of Distributed Order , 2007 .

[35]  Jianfei Huang,et al.  Numerical solution of fractional diffusion-wave equation based on fractional multistep method , 2014 .

[36]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[37]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[38]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[40]  Minghua Chen,et al.  A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations , 2015, Appl. Math. Comput..

[41]  Zhi-Zhong Sun,et al.  A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..

[42]  Hong Wang,et al.  A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains , 2017, Comput. Math. Appl..