Optimization of silicon bipolar transistors for high current gain at low temperatures

Bipolar transistors designed specifically for operation at liquid-nitrogen (LN/sub 2/) temperature are discussed. It is found that for high-gain LN/sub 2/ bipolar transistors, the emitter concentration should be around 5*10/sup 18/ cm/sup -3/. Compensating impurities in the base should be kept to minimum. Test bipolar transistors with polysilicon emitter contacts were fabricated using these criteria. The devices show very little current degradation between room temperature and 77 k. Polysilicon emitter contacts are also shown to be somewhat more effective at lower temperatures. >

[1]  J. Plummer,et al.  A low-temperature NMOS technology with Cesium-implanted load devices , 1987, IEEE Transactions on Electron Devices.

[2]  Takashi Hotta,et al.  CMOS/bipolar circuits for 60-MHz digital processing , 1986 .

[3]  P. M. Solomon,et al.  Bipolar transistor design for optimized power-delay logic circuits , 1979 .

[4]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[5]  R. Keyes,et al.  The role of low temperatures in the operation of logic circuitry , 1970 .

[6]  R. M. Swanson,et al.  VIB-4 temperature dependence of minority electron mobility and bandgap narrowing in p + Si , 1987 .

[7]  R. M. Swanson,et al.  Majority and minority carrier transport in polysilicon emitter contacts , 1986, 1986 International Electron Devices Meeting.

[8]  W. Dumke The effect of base doping on the performance of Si bipolar transistors at low temperatures , 1981, IEEE Transactions on Electron Devices.

[9]  R.D. Isaac,et al.  Effect of emitter contact on current gain of silicon bipolar devices , 1980, IEEE Transactions on Electron Devices.

[10]  H.P. Vyas,et al.  Cryogenic behavior of scaled CMOS devices , 1984, 1984 International Electron Devices Meeting.

[11]  G. Patton,et al.  Physics, technology, and modeling of polysilicon emitter contacts for VLSI bipolar transistors , 1986, IEEE Transactions on Electron Devices.

[12]  H. Bennett,et al.  Improved concepts for predicting the electrical behavior of bipolar structures in silicon , 1983, IEEE Transactions on Electron Devices.

[13]  A. Kamgar,et al.  Miniaturization of Si MOSFET's at 77 K , 1982, IEEE Transactions on Electron Devices.

[14]  T. Ikeda,et al.  Advanced BiCMOS technology for high speed VLSI , 1986, 1986 International Electron Devices Meeting.

[15]  W. Dumke Effect of minority carrier trapping on the low-temperature characteristics of Si transistors , 1970 .

[16]  J. Woo,et al.  Non-ideal base current in bipolar transistors at low temperatures , 1987, IEEE Transactions on Electron Devices.

[17]  Richard C. Jaeger,et al.  Behavior of electrically small depletion mode MOSFETs at low temperature , 1981 .

[18]  R.W. Dutton,et al.  VLSI Process modeling—SUPREM III , 1983, IEEE Transactions on Electron Devices.

[19]  Yuan Taur,et al.  Submicrometer-channel CMOS for low-temperature operation , 1987, IEEE Transactions on Electron Devices.

[20]  R.C. Jaeger,et al.  Temperature dependence of latchup in CMOS circuits , 1984, IEEE Electron Device Letters.

[21]  S. Hanamura,et al.  Operation of Bulk CMOS Devices at Very Low Temperatures , 1983, 1983 Symposium on VLSI Technology. Digest of Technical Papers.

[22]  Krishna C. Saraswat,et al.  Effect of scaling of interconnections on the time delay of VLSI circuits , 1982 .

[23]  J.D. Plummer,et al.  Substrate current at cryogenic temperatures: Measurements and a two-dimensional model for CMOS technology , 1987, IEEE Transactions on Electron Devices.

[24]  S. Tewksbury,et al.  N-channel enhancement-mode MOSFET characteristics from 10 to 300 K , 1981, IEEE Transactions on Electron Devices.

[25]  Hans-Martin Rein,et al.  A contribution to the current gain temperature dependence of bipolar transistors , 1978 .

[26]  J. Dziewior,et al.  Auger coefficients for highly doped and highly excited silicon , 1977 .

[27]  D. Tang Heavy doping effects in p-n-p bipolar transistors , 1980, IEEE Transactions on Electron Devices.