CABARET Method on Unstructured Hexahedral Grids for Jet Noise Computation

Abstract A new scalable high-resolution CABARET MILES method coupled with a porous Ffowcs Williams–Hawking formulation for far-field noise modelling is applied for the computation of flow and noise from a high-speed turbulent jet, which corresponds to a converging axi-symmetric nozzle and static isothermal conditions of the Jet Exhaust Aerodynamics and Noise experiment. Computational simulation results are provided for a range of grid resolutions. The results for simple means, turbulent kinetic energy, and fourth-order velocity correlations are compared with the experimental data and with a reference LES-Smagorinsky calculation from the literature. Far-field-noise predictions are obtained based on several integral control surfaces, which are used for consistency of the model. The far-field noise spectra are also compared with the experiment. The directivity of the far field noise predicted is analysed with the Azimuthal Decomposition Technique and compared with jet noise data from the TsAGI experimental database.

[1]  M. E. Goldstein,et al.  A generalized acoustic analogy , 2003, Journal of Fluid Mechanics.

[2]  V. Kopiev,et al.  Mechanism of sound radiation by turbulence near a rigid body , 2008 .

[3]  P. Spalart,et al.  Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests , 2005 .

[4]  P. A. Lush,et al.  Measurements of subsonic jet noise and comparison with theory , 1971, Journal of Fluid Mechanics.

[5]  D. L. Hawkings,et al.  Sound generation by turbulence and surfaces in arbitrary motion , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  S. A. Karabasov,et al.  CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems , 2013, J. Comput. Phys..

[7]  W. A. McMullan,et al.  Jet Noise: Acoustic Analogy informed by Large Eddy Simulation , 2010 .

[8]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[9]  A. E. Aksenova,et al.  CFD validation in OECD/NEA t-junction benchmark. , 2011 .

[10]  Sergey A. Karabasov,et al.  New Efficient High-Resolution Method for Nonlinear Problems in Aeroacoustics , 2007 .

[11]  D. A. Lyubimov,et al.  Noise Predictions for Chevron Nozzle Flows , 2006 .

[12]  W. A. McMullan,et al.  Large Eddy Simulation of a High Reynolds Number Subsonic Turbulent Jet for Acoustic Source Capture , 2008 .

[13]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[14]  Marcus Harper-Bourne,et al.  Jet Noise Turbulence Measurements , 2003 .

[15]  S. Karabasov,et al.  A novel computational method for modelling stochastic advection in heterogeneous media , 2007 .

[16]  N. Ostrikov,et al.  Vortex Ring Input in Subsonic Jet Noise , 2007 .

[17]  Philip Roe Linear Bicharacteristic Schemes Without Dissipation , 1998, SIAM J. Sci. Comput..

[18]  S. Velichko,et al.  Cross-correlations of far field azimuthal modes in subsonic jet noise , 2008 .

[19]  S. Karabasov,et al.  Computation of the noise of initially laminar jets using a statistical approach for the acoustic analogy: application and discussion , 2011 .

[20]  J. Farrar,et al.  On latency of multiple zonal jets in the oceans , 2011, Journal of Fluid Mechanics.

[21]  T. Colonius,et al.  Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .

[22]  S. Karabasov,et al.  CABARET in the ocean gyres , 2009 .

[23]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[24]  V. M. Goloviznin,et al.  Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics , 2009, J. Comput. Phys..

[25]  Semyon Tsynkov,et al.  Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .

[26]  Sanjiva K. Lele,et al.  Direct numerical simulation of spatially developing, compressible, turbulent mixing layers , 2001 .

[27]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[28]  Philip J. Morris,et al.  Measurements in subsonic and supersonic free jets using a laser velocimeter , 1979, Journal of Fluid Mechanics.

[29]  Balanced characteristic method for systems of hyperbolic conservation laws , 2005 .

[30]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[31]  Tom Hynes,et al.  OPEN BOUNDARY CONDITIONS OF PREDICTOR-CORRECTOR TYPE FOR EXTERNAL FLOWS , 2002 .

[32]  Peter Jordan,et al.  Measurements of turbulence statistics in high subsonic jets , 2004 .

[33]  P. D. Francescantonio A NEW BOUNDARY INTEGRAL FORMULATION FOR THE PREDICTION OF SOUND RADIATION , 1997 .

[34]  Christophe Bailly,et al.  Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets , 2010, Journal of Fluid Mechanics.

[35]  A. Iserles Generalized Leapfrog Methods , 1986 .

[36]  Tom Hynes,et al.  An investigation of the mechanisms of sound generation in initially laminar subsonic jets using the Goldstein acoustic analogy , 2013, Journal of Fluid Mechanics.

[37]  Tom Hynes,et al.  Transonic Helicopter Noise , 2003 .