Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. I. Asymptotic Expansion Formulas
暂无分享,去创建一个
[1] René Carmona,et al. Anderson localization for Bernoulli and other singular potentials , 1987 .
[2] A. Astrauskas. On High-Level Exceedances of Gaussian Fields and the Spectrum of Random Hamiltonians , 2003 .
[3] W. Konig,et al. Geometric characterization of intermittency in the parabolic Anderson model , 2005, math/0507585.
[4] W. König,et al. The Universality Classes in the Parabolic Anderson Model , 2005, math/0504102.
[5] D. Bakry,et al. Lectures on Probability Theory : Ecole d'Ete de Probabilites de Saint-Flour XXII, 1992 , 2008 .
[6] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[7] S. Molčanov,et al. On the basic states of one-dimensional disordered structures , 1983 .
[8] J. Fröhlich,et al. Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .
[9] On high-level exceedances of i.i.d. random fields , 2001 .
[10] A. Astrauskas,et al. Poisson-Type Limit Theorems for Eigenvalues of Finite-Volume Anderson Hamiltonians , 2007 .
[11] J. Gärtner,et al. Parabolic problems for the Anderson model , 1990 .
[12] F. Martinelli,et al. Constructive proof of localization in the Anderson tight binding model , 1985 .
[13] Alexander Figotin,et al. Spectra of Random and Almost-Periodic Operators , 1991 .
[14] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[15] Integrated density of states and Wegner estimates for random Schr , 2003, math-ph/0307062.
[16] C. Fox. Variational Methods for Eigenvalue Problems. By S. H. Gould. Pp. xiv, 179. 48s. 1957. (University of Toronto Press and Oxford University Press) , 1959, The Mathematical Gazette.
[17] J. Gärtner,et al. Correlation structure of intermittency in the parabolic Anderson model , 1999 .
[18] C. Tracy,et al. Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.
[19] L. Pastur,et al. Introduction to the Theory of Disordered Systems , 1988 .
[20] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[21] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[22] F. Martinelli,et al. Introduction to the mathematical theory of Anderson localization , 1986 .
[23] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[24] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[25] M. Aizenman,et al. Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .
[26] M. Wüthrich,et al. Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential , 2001 .
[27] A. Sznitman. Brownian motion, obstacles, and random media , 1998 .
[28] Peter Lancaster,et al. The theory of matrices , 1969 .
[29] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .
[30] M. Aizenman,et al. Localization at large disorder and at extreme energies: An elementary derivations , 1993 .
[31] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[32] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[33] S. Molchanov. Lectures on random media , 1994 .
[34] R. Carmona,et al. Parabolic Anderson Problem and Intermittency , 1994 .
[35] R. Carmona,et al. Spectral Theory of Random Schrödinger Operators , 1990 .
[36] J. Gärtner,et al. Parabolic problems for the Anderson model , 1998 .
[37] S. H. Gould. Variational Methods for Eigenvalue Problems: An Introduction to the Weinstein Method of Intermediate Problems , 1966 .
[38] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[39] S. D. Chatterji. Proceedings of the International Congress of Mathematicians , 1995 .