Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. I. Asymptotic Expansion Formulas

We consider the spectral problem for the random Schrödinger operator on the multidimensional lattice torus increasing to the whole of lattice, with an i.i.d. potential (Anderson Hamiltonian). We obtain the explicit almost sure asymptotic expansion formulas for the extreme eigenvalues and eigenfunctions in the intermediate rank case, provided the upper distributional tails of potential decay at infinity slower than the double exponential function. For the fractional-exponential tails (including Weibull’s and Gaussian distributions), extremal type limit theorems for eigenvalues are proved, and the strong influence of parameters of the model on a specification of normalizing constants is described. In the proof we use the finite-rank perturbation arguments based on the cluster expansion for resolvents.The results of our paper illustrate a close connection between extreme value theory for spectrum and extremal properties of i.i.d. potential. On the other hand, localization properties of the corresponding eigenfunctions give an essential information on long-time intermittency for the parabolic Anderson model.

[1]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[2]  A. Astrauskas On High-Level Exceedances of Gaussian Fields and the Spectrum of Random Hamiltonians , 2003 .

[3]  W. Konig,et al.  Geometric characterization of intermittency in the parabolic Anderson model , 2005, math/0507585.

[4]  W. König,et al.  The Universality Classes in the Parabolic Anderson Model , 2005, math/0504102.

[5]  D. Bakry,et al.  Lectures on Probability Theory : Ecole d'Ete de Probabilites de Saint-Flour XXII, 1992 , 2008 .

[6]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[7]  S. Molčanov,et al.  On the basic states of one-dimensional disordered structures , 1983 .

[8]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[9]  On high-level exceedances of i.i.d. random fields , 2001 .

[10]  A. Astrauskas,et al.  Poisson-Type Limit Theorems for Eigenvalues of Finite-Volume Anderson Hamiltonians , 2007 .

[11]  J. Gärtner,et al.  Parabolic problems for the Anderson model , 1990 .

[12]  F. Martinelli,et al.  Constructive proof of localization in the Anderson tight binding model , 1985 .

[13]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[14]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[15]  Integrated density of states and Wegner estimates for random Schr , 2003, math-ph/0307062.

[16]  C. Fox Variational Methods for Eigenvalue Problems. By S. H. Gould. Pp. xiv, 179. 48s. 1957. (University of Toronto Press and Oxford University Press) , 1959, The Mathematical Gazette.

[17]  J. Gärtner,et al.  Correlation structure of intermittency in the parabolic Anderson model , 1999 .

[18]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[19]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[20]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[21]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[22]  F. Martinelli,et al.  Introduction to the mathematical theory of Anderson localization , 1986 .

[23]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[24]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[25]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[26]  M. Wüthrich,et al.  Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential , 2001 .

[27]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .

[28]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[29]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[30]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[31]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[32]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[33]  S. Molchanov Lectures on random media , 1994 .

[34]  R. Carmona,et al.  Parabolic Anderson Problem and Intermittency , 1994 .

[35]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[36]  J. Gärtner,et al.  Parabolic problems for the Anderson model , 1998 .

[37]  S. H. Gould Variational Methods for Eigenvalue Problems: An Introduction to the Weinstein Method of Intermediate Problems , 1966 .

[38]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[39]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .