Pseudo-telepathy games and genuine ns k-way nonlocality using graph states

We define a family of pseudo-telepathy games using graph states that extends the Mermin games. This family also contains a game used to define a quantum probability distribution that cannot be simulated by any number of nonlocal boxes. We extend this result, proving that the probability distribution obtained by the Paley graph state on 13 vertices (each vertex corresponds to a player) cannot be simulated by any number of 4-partite nonlocal boxes and that the Paley graph states on k222k-2 vertices provide a probability distribution that cannot be simulated by k-partite nonlocal boxes, for any k.

[1]  Stefano Pironio,et al.  Definitions of multipartite nonlocality , 2011, 1112.2626.

[2]  Anthony Bonato The search for N-e.c. graphs , 2009, Contributions Discret. Math..

[3]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[4]  S. Popescu,et al.  Nonlocality as an axiom for quantum theory , 1995, quant-ph/9508009.

[5]  G. Brassard,et al.  Quantum Pseudo-Telepathy , 2004, quant-ph/0407221.

[6]  Frank Harary,et al.  Paley graphs satisfy all first-order adjacency axioms , 1981, J. Graph Theory.

[7]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[8]  Anthony Bonato,et al.  Hadamard Matrices and Strongly Regular Graphs with the 3-e.c. Adjacency Property , 2001, Electron. J. Comb..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Mehdi Mhalla,et al.  On the Minimum Degree Up to Local Complementation: Bounds and Complexity , 2012, WG.

[11]  M. Seevinck,et al.  Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.

[12]  L. Caccetta,et al.  A PROPERTY OF RANDOM GRAPHS , 2001 .

[13]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[14]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[15]  Gilles Brassard,et al.  Recasting mermin's multi-player game into the framework of pseudo-telepathy , 2005, Quantum Inf. Comput..

[16]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[17]  N. Gisin,et al.  Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol. , 2011, Physical review letters.

[18]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[19]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[20]  Mehdi Mhalla,et al.  New Protocols and Lower Bounds for Quantum Secret Sharing with Graph States , 2011, TQC.

[21]  D. Bacon,et al.  Communication cost of simulating Bell correlations. , 2003, Physical review letters.

[22]  S. Pironio,et al.  Popescu-Rohrlich correlations as a unit of nonlocality. , 2005, Physical review letters.

[23]  S. Massar,et al.  Combinatorics and quantum nonlocality. , 2002, Physical review letters.

[24]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[25]  Anne Broadbent,et al.  On the power of non-local boxes , 2006, Theor. Comput. Sci..

[26]  Mehdi Mhalla,et al.  Resources Required for Preparing Graph States , 2006, ISAAC.

[27]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[28]  N J Cerf,et al.  Simulating maximal quantum entanglement without communication. , 2005, Physical review letters.

[29]  Sylvain Gravier,et al.  On weak odd domination and graph-based quantum secret sharing , 2011, Theor. Comput. Sci..

[30]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[31]  V. Scarani,et al.  Extremal correlations of the tripartite no-signaling polytope , 2011, 1101.2477.