Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

[1]  J. Saikia,et al.  Possible protection of silver nanoparticles against salt by using rhamnolipid. , 2013, Colloids and surfaces. B, Biointerfaces.

[2]  J. Saikia,et al.  Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. , 2013, Colloids and surfaces. B, Biointerfaces.

[3]  N. Karak,et al.  Isolation and immobilization of aroid polyphenol on magnetic nanoparticles: enhancement of potency on surface immobilization. , 2013, Colloids and surfaces. B, Biointerfaces.

[4]  J. Saikia,et al.  Immobilizing silver nanoparticles (SNP) on Musa balbisiana cellulose. , 2013, Colloids and surfaces. B, Biointerfaces.

[5]  A. Buragohain,et al.  A novel 'green' synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. , 2013, Colloids and surfaces. B, Biointerfaces.

[6]  J. Saikia,et al.  Enhancing the stability of colloidal silver nanoparticles using polyhydroxyalkanoates (PHA) from Bacillus circulans (MTCC 8167) isolated from crude oil contaminated soil. , 2011, Colloids and surfaces. B, Biointerfaces.

[7]  B. Stritzker,et al.  Antibacterial properties of silver containing diamond like carbon coatings produced by ion induced polymer densification , 2011 .

[8]  R. Rujiravanit,et al.  Characterization and encapsulation efficiency of rhamnolipid vesicles with cholesterol addition. , 2011, Journal of bioscience and bioengineering.

[9]  B. K. Konwar,et al.  Production and Physico-chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge , 2011, Applied biochemistry and biotechnology.

[10]  Kirk G Scheckel,et al.  Surface charge-dependent toxicity of silver nanoparticles. , 2011, Environmental science & technology.

[11]  J. Saikia,et al.  Nickel oxide nanoparticles: a novel antioxidant. , 2010, Colloids and surfaces. B, Biointerfaces.

[12]  Albrecht Schwab,et al.  Directional Cell Migration and Chemotaxis in Wound Healing Response to PDGF-AA are Coordinated by the Primary Cilium in Fibroblasts , 2010, Cellular Physiology and Biochemistry.

[13]  N. Karak,et al.  Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation. , 2009, Bioresource technology.

[14]  Hiroyuki Kobayashi,et al.  Pathogenesis and clinical manifestations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract , 2009, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[15]  Teresa L. Kirschling Nanoparticle Interactions with Bacteria: Toxicity and Chemotaxis , 2009 .

[16]  K. Wong,et al.  Topical Delivery of Silver Nanoparticles Promotes Wound Healing , 2007, ChemMedChem.

[17]  Rosário Oliveira,et al.  Biosurfactants: potential applications in medicine. , 2006, The Journal of antimicrobial chemotherapy.

[18]  A. Piljac,et al.  Enhanced healing of full-thickness burn wounds using di-rhamnolipid. , 2006, Burns : journal of the International Society for Burn Injuries.

[19]  S. A. Silver,et al.  Effect ofPseudomonas aeruginosa rhamnolipid on human neutrophil migration , 1984, Current Microbiology.

[20]  J. Stock,et al.  Bacterial chemotaxis: The five sensors of a bacterium , 1998, Current Biology.