Adapting to the User's Internet Search Strategy

World Wide Web search engines typically return thousands of results to the users. To avoid users browsing through the whole list of results, search engines use ranking algorithms to order the list according to predefined criteria. In this paper, we present Toogle, a front-end to the Google search engine for both desktop browsers and mobile phones. For a given search query, Toogle first ranks results using Google's algorithm and, as the user browses through the result list, uses machine learning techniques to infer a model of her search goal and to adapt accordingly the order in which the results are presented. We describe preliminary experimental results that show the effectiveness of Toogle.

[1]  Henry Lieberman,et al.  Autonomous interface agents , 1997, CHI.

[2]  Pedro M. Domingos,et al.  Adaptive Web Navigation for Wireless Devices , 2001, IJCAI.

[3]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[4]  Peter Brusilovsky,et al.  Adaptive Hypermedia , 2001, User Modeling and User-Adapted Interaction.

[5]  Susan T. Dumais,et al.  Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.

[6]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[7]  Henry Lieberman,et al.  GOOSE: A Goal-Oriented Search Engine with Commonsense , 2002, AH.

[8]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[9]  T. Joachims WebWatcher : A Tour Guide for the World Wide Web , 1997 .

[10]  Peter Brusilovsky,et al.  Methods and techniques of adaptive hypermedia , 1996, User Modeling and User-Adapted Interaction.

[11]  Kristian J. Hammond,et al.  Mining navigation history for recommendation , 2000, IUI '00.

[12]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[13]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[14]  Thorsten Joachims,et al.  SVM Light: Support Vector Machine , 2002 .

[15]  Thorsten Joachims,et al.  Web Watcher: A Tour Guide for the World Wide Web , 1997, IJCAI.

[16]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[17]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[18]  Ryen W. White,et al.  Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes , 2002, SIGIR '02.