Pressure-induced changes in the conductivity of AlGaN∕GaN high-electron mobility-transistor membranes

AlGaN∕GaN high-electron-mobility transistors (HEMTs) show a strong dependence of source∕drain current on the piezoelectric-polarization-induced two-dimensional electron gas. The spontaneous and piezoelectric-polarization-induced surface and interface charges can be used to develop very sensitive but robust sensors for the detection of pressure changes. The changes in the conductance of the channel of a AlGaN∕GaN high electron mobility transistor (HEMT) membrane structure fabricated on a Si substrate were measured during the application of both tensile and compressive strain through changes in the ambient pressure. The conductivity of the channel shows a linear change of −(+)6.4×10−2mS∕bar for application of compressive (tensile) strain. The AlGaN∕GaN HEMT membrane-based sensors appear to be promising for pressure sensing applications.

[1]  S. N. G. Chu,et al.  Elastic Bending of Semiconductor Wafer Revisited and Comments on Stoney's Equation , 1998 .

[2]  Joan M. Redwing,et al.  Piezoelectric charge densities in AlGaN/GaN HFETs , 1997 .

[3]  Michael S. Shur,et al.  GaN based transistors for high power applications , 1998 .

[4]  Lester F. Eastman,et al.  Correlation of device performance and defects in AlGaN/GaN high-electron mobility transistors , 2003 .

[5]  S. S. Park,et al.  Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers , 2002 .

[6]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[7]  Ilesanmi Adesida,et al.  AlGaN/GaN HEMTs on SiC with over 100 GHz f/sub T/ and low microwave noise , 2001 .

[8]  Guan-Ting Chen,et al.  Effect of external strain on the conductivity of AlGaN/GaN high electron mobility transistors , 2003 .

[9]  Amir Dabiran,et al.  Effect of gate length on DC performance of AlGaN/GaN HEMTs grown by MBE , 2001 .

[10]  N. B. Smirnov,et al.  Al composition dependence of breakdown voltage in AlxGa1−xN Schottky rectifiers , 2000 .

[11]  S. Hark,et al.  Strain‐induced effects in (111)‐oriented InAsP/InP, InGaAs/InP, and InGaAs/InAlAs quantum wells on InP substrates , 1995 .

[12]  Hadis Morkoç,et al.  Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors , 1999 .

[13]  M. Shur,et al.  DC and microwave performance of a GaN/AlGaN MOSHFET under high temperature stress , 2002 .

[14]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[15]  Stephen J. Pearton,et al.  Comparison of GaN p-i-n and Schottky rectifier performance , 2001 .

[16]  Umesh K. Mishra,et al.  The toughest transistor yet [GaN transistors] , 2002 .

[17]  Abhinav Kranti,et al.  Impact of strain relaxation of AlmGa1−mN layer on 2-DEG sheet charge density and current voltage characteristics of lattice mismatched AlmGa1−mN/GaN HEMTs , 2002 .

[18]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[19]  G. Simin,et al.  Low-loss high power RF switching using multifinger AlGaN/GaN MOSHFETs , 2002, IEEE Electron Device Letters.

[20]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .