Beta ridge regression estimators: simulation and application

[1]  Raydonal Ospina,et al.  Model Selection Criteria on Beta Regression for Machine Learning , 2019, Mach. Learn. Knowl. Extr..

[2]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[3]  Francisco Cribari-Neto,et al.  Model selection criteria in beta regression with varying dispersion , 2017, Commun. Stat. Simul. Comput..

[4]  B. M. Kibria,et al.  Some ridge regression estimators for the zero-inflated Poisson model , 2013 .

[5]  Volkan Sevinç,et al.  TWO NEW RIDGE PARAMETERS AND A GUIDE FOR SELECTING AN APPROPRIATE RIDGE PARAMETER IN LINEAR REGRESSION , 2016 .

[6]  New robust-ridge estimators for partially linear model , 2019 .

[7]  A. V. Dorugade New ridge parameters for ridge regression , 2014 .

[8]  S. Bhat,et al.  A Comparative Study on the Performance of New Ridge Estimators , 2016 .

[9]  M. Norouzirad,et al.  Preliminary test and Stein-type shrinkage ridge estimators in robust regression , 2017 .

[10]  K. Månsson On ridge estimators for the negative binomial regression model , 2012 .

[11]  Modified Ridge Parameters for Seemingly Unrelated Regression Model , 2010 .

[12]  Robert L. Mason,et al.  Biased Estimation in Regression: An Evaluation Using Mean Squared Error , 1977 .

[13]  R. R. Hocking,et al.  A Class of Biased Estimators in Linear Regression , 1976 .

[14]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[15]  S. Aktas,et al.  Beta Regression for the Indicator Values of Well-Being Index For Provinces in Turkey , 2017 .

[16]  Z. Algamal Performance of ridge estimator in inverse Gaussian regression model , 2019 .

[17]  Marvin H. J. Gruber Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators , 1998 .

[18]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[19]  Rasha A. Farghali,et al.  Liu-Type Multinomial Logistic Estimator , 2018, Sankhya B.

[20]  G. Shukur,et al.  Developing Ridge Parameters for SUR Model , 2008 .

[22]  Mohamed R. Abonazel,et al.  Generalized two-parameter estimators in the multinomial logit regression model: methods, simulation and application , 2021, Communications in Statistics - Simulation and Computation.

[23]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[24]  Wagner Barreto-Souza,et al.  Improved estimators for a general class of beta regression models , 2008, Comput. Stat. Data Anal..

[25]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[26]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .

[27]  S. Ferrari,et al.  On beta regression residuals , 2008 .

[28]  Modified ridge-type estimator for the gamma regression model , 2020 .

[29]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[30]  Mohamed R. Abonazel,et al.  Modified ridge-type for the Poisson regression model: simulation and application , 2021, Journal of applied statistics.

[31]  Michael Smithson,et al.  A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. , 2006, Psychological methods.

[32]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[33]  M. Amin,et al.  Performance of some ridge estimators for the gamma regression model , 2020 .

[34]  Yasin ASAR,et al.  Influence Diagnostics in Two-Parameter Ridge Regression , 2021 .

[35]  Lennart Nordberg A procedure for determination of a good ridge parameter in linear regression , 1982 .

[36]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .