Random sum-free subsets of abelian groups
暂无分享,去创建一个
[1] T. Luczak. Randomness and regularity , 2006 .
[2] E. Friedgut,et al. Sharp thresholds of graph properties, and the -sat problem , 1999 .
[3] Gregory A. Freiman. On the structure and the number of sum-free sets , 1992 .
[4] I. Schur. Über Kongruenz x ... (mod. p.). , 1917 .
[5] Andrzej Ruciński,et al. Rado Partition Theorem for Random Subsets of Integers , 1997 .
[6] Vojtech Rödl,et al. Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..
[7] W. T. Gowers,et al. Combinatorial theorems in sparse random sets , 2010, 1011.4310.
[8] Neil J. Calkin. On the Number of Sum-Free Sets , 1990 .
[9] Paul Erdös,et al. Notes on Sum-Free and Related Sets , 1999 .
[10] Vsevolod F. Lev,et al. Cameron-Erdo? s Modulo a Prime , 2002 .
[11] H. P. Yap,et al. Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .
[12] Cameron-Erdős Modulo a Prime , 2002 .
[13] Vojtech Rödl,et al. A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.
[14] Vojtech Rödl,et al. Quantitative theorems for regular systems of equations , 1988, J. Comb. Theory, Ser. A.
[15] V. Rödl,et al. Ramsey properties of random discrete structures , 2010 .
[16] H. Abbott,et al. Sum-free sets of integers , 1966 .
[17] Miklós Simonovits,et al. Extremal subgraphs of random graphs , 1990, J. Graph Theory.
[18] Konstantinos Panagiotou,et al. Extremal subgraphs of random graphs , 2007, SODA '07.
[19] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[20] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[21] G. Kalai,et al. Every monotone graph property has a sharp threshold , 1996 .
[22] Maximal Sum-Free Sets of Group Elements , 1969 .
[23] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[24] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[25] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[26] A. A. Sapozhenko. The Cameron-Erd˝ os conjecture , 2008 .
[27] N. Alon,et al. A Tribute to Paul Erdős: Sum-free subsets , 1990 .
[28] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[29] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[30] K. F. Roth. On Certain Sets of Integers , 1953 .
[31] Hamed Hatami. A structure theorem for Boolean functions with small total influences , 2010, 1008.1021.
[32] J. Balogh,et al. Independent sets in hypergraphs , 2012, 1204.6530.
[33] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .
[34] Béla Bollobás,et al. Threshold functions , 1987, Comb..
[35] Peter J. Cameron. On the structure of a random sum-free set , 1987 .
[36] Daniel Král,et al. A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.
[37] Wojciech Samotij,et al. Counting sum-free sets in abelian groups , 2012, 1201.6654.
[38] Ben Green,et al. Sum-free sets in abelian groups , 2003 .
[39] Ben Green,et al. Counting sumsets and sum-free sets modulo a prime , 2004 .
[40] On sum-free subsequences , 1975 .
[41] Richard Mollin,et al. On the Number of Sets of Integers With Various Properties , 1990 .
[42] Ben Green. The Cameron–Erdős Conjecture , 2003 .