Least-squares estimation of anisotropic similarity transformations from corresponding 2D point sets

Pose estimation is a problem that occurs in many applications. In machine vision, the pose is often a 2D affine pose. In several applications, a restricted class of 2D affine poses with five degrees of freedom consisting of an anisotropic scaling, a rotation, and a translation must be determined from corresponding 2D points. A closed-form least-squares solution for this problem is described. The algorithm can be extended easily to robustly deal with outliers.

[1]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[2]  W. A. Perkins INSPECTOR: A Computer Vision System that Learns to Inspect Parts , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Gerd Hirzinger,et al.  More accurate camera and hand-eye calibrations with unknown grid pattern dimensions , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  Josien P. W. Pluim,et al.  Image Registration , 2003, IEEE Trans. Medical Imaging.

[5]  Yun Zhang,et al.  A critical review of image registration methods , 2010 .

[6]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[7]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[8]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[9]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[10]  George T. Gilber Positive definite matrices and Sylvester's criterion , 1991 .

[11]  Mohammed Bennani Dosse,et al.  Anisotropic Orthogonal Procrustes Analysis , 2010, J. Classif..

[12]  C. Steger OCCLUSION , CLUTTER , AND ILLUMINATION INVARIANT OBJECT RECOGNITION , 2002 .

[13]  John C. Gower,et al.  Procrustes methods , 2010 .

[14]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[15]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Fitzpatrick,et al.  Medical image processing and analysis , 2000 .

[17]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[18]  Josien P. W. Pluim,et al.  Image registration , 2003, IEEE Transactions on Medical Imaging.

[19]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[20]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[21]  Jay B. West,et al.  Scalings and Similarity Transforms: Maximum Likelihood Estimations , 2002 .

[22]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[23]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[24]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[26]  Isaac N. Bankman,et al.  Handbook of medical image processing and analysis , 2009 .

[27]  Markus Ulrich,et al.  Machine Vision Algorithms and Applications , 2007 .