Two-level matrix factorization for recommender systems

Many existing recommendation methods such as matrix factorization (MF) mainly rely on user–item rating matrix, which sometimes is not informative enough, often suffering from the cold-start problem. To solve this challenge, complementary textual relations between items are incorporated into recommender systems (RS) in this paper. Specifically, we first apply a novel weighted textual matrix factorization (WTMF) approach to compute the semantic similarities between items, then integrate the inferred item semantic relations into MF and propose a two-level matrix factorization (TLMF) model for RS. Experimental results on two open data sets not only demonstrate the superiority of TLMF model over benchmark methods, but also show the effectiveness of TLMF for solving the cold-start problem.

[1]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[2]  Heng Ji,et al.  Linking Tweets to News: A Framework to Enrich Short Text Data in Social Media , 2013, ACL.

[3]  Longbing Cao,et al.  Coupled nominal similarity in unsupervised learning , 2011, CIKM '11.

[4]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[5]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[6]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[7]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[8]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[9]  Longbing Cao,et al.  Coupled clustering ensemble: Incorporating coupling relationships both between base clusterings and objects , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[10]  Lars Schmidt-Thieme,et al.  Learning Attribute-to-Feature Mappings for Cold-Start Recommendations , 2010, 2010 IEEE International Conference on Data Mining.

[11]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[12]  Longbing Cao,et al.  Coupled Attribute Analysis on Numerical Data , 2013, IJCAI.

[13]  Le Wu,et al.  Leveraging tagging for neighborhood-aware probabilistic matrix factorization , 2012, CIKM.

[14]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[15]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[16]  Kam-Fai Wong,et al.  Interpreting TF-IDF term weights as making relevance decisions , 2008, TOIS.

[17]  Michael R. Lyu,et al.  SoRec: social recommendation using probabilistic matrix factorization , 2008, CIKM '08.

[18]  Steffen Rendle,et al.  Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.

[19]  Weiwei Guo,et al.  Weiwei: A Simple Unsupervised Latent Semantics based Approach for Sentence Similarity , 2012, SemEval@NAACL-HLT.

[20]  Hao Ma,et al.  An experimental study on implicit social recommendation , 2013, SIGIR.

[21]  Fangfang Li,et al.  CGMF: Coupled Group-Based Matrix Factorization for Recommender System , 2013, WISE.

[22]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[23]  Fangfang Li,et al.  Coupled Item-Based Matrix Factorization , 2014, WISE.

[24]  Charles Elkan,et al.  A Log-Linear Model with Latent Features for Dyadic Prediction , 2010, 2010 IEEE International Conference on Data Mining.

[25]  Weiwei Guo,et al.  Modeling Sentences in the Latent Space , 2012, ACL.

[26]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[27]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[28]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[29]  Yang Gao,et al.  A Coupled Clustering Approach for Items Recommendation , 2013, PAKDD.

[30]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[31]  Harald Steck,et al.  Circle-based recommendation in online social networks , 2012, KDD.

[32]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.