Disentangling stress and curvature effects in layered 2D ferroelectric CuInP2S6

Nanoscale ferroelectric 2D materials offer unique opportunity to investigate curvature and strain effects on materials functionalities. Among these, CuInP2S6 (CIPS) has attracted tremendous research interest in recent years due to combination of room temperature ferroelectricity, scalability to a few layers thickness, and unique ferrielectric properties due to coexistence of 2 polar sublattices. Here, we explore the local curvature and strain effect on the polarization in CIPS via piezoresponse force microscopy and spectroscopy. To explain the observed behaviors and decouple the curvature and strain effects in 2D CIPS, we introduce finite element Landau-Ginzburg-Devonshire model. The results show that bending induces ferrielectric domains in CIPS, and the polarization-voltage hysteresis loops differ in bending and non-bending regions. Our simulation indicates that the flexoelectric effect can affect local polarization hysteresis. These studies open a novel pathway for the fabrication of curvature-engineered nanoelectronic devices.

[1]  Xiangdong Ding,et al.  Reducing Threshold of Ferroelectric Domain Switching in Ultrathin Two-Dimensional CuInP2S6 Ferroelectrics via Electrical-Mechanical Coupling. , 2023, The journal of physical chemistry letters.

[2]  D. Evans,et al.  Screening-induced phase transitions in core-shell ferroic nanoparticles , 2022, Physical Review Materials.

[3]  Yuerui Lu,et al.  Extraordinary Nonlinear Optical Interaction from Strained Nanostructures in van der Waals CuInP2S6. , 2022, ACS nano.

[4]  Jie Wang,et al.  Flexoelectric engineering of van der Waals ferroelectric CuInP2S6 , 2022, Science advances.

[5]  Sergei V. Kalinin,et al.  Temperature-Assisted Piezoresponse Force Microscopy: Probing Local Temperature-Induced Phase Transitions in Ferroics , 2022, Physical Review Applied.

[6]  H. Zeng,et al.  Large-Scale Domain Engineering in Two-Dimensional Ferroelectric CuInP2S6 via Giant Flexoelectric Effect. , 2021, Nano letters.

[7]  P. Xiang,et al.  Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric , 2020, Nature Communications.

[8]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[9]  L. You,et al.  Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor , 2020 .

[10]  M. Osada,et al.  The rise of 2D dielectrics/ferroelectrics , 2019, APL Materials.

[11]  Sergei V. Kalinin,et al.  Tunable quadruple-well ferroelectric van der Waals crystals , 2019, Nature Materials.

[12]  Zhihua Sun,et al.  Strain engineering to facilitate the occurrence of 2D ferroelectricity in CuInP2S6 monolayer , 2019, Journal of Physics D: Applied Physics.

[13]  G. Refael,et al.  Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[14]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[15]  Qingsheng Zeng,et al.  Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes , 2019, Nano Energy.

[16]  Luqi Liu,et al.  Strain Engineering of 2D Materials: Issues and Opportunities at the Interface , 2019, Advanced materials.

[17]  P. Jena,et al.  The rise of two‐dimensional van der Waals ferroelectrics , 2018 .

[18]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[19]  Sergei V. Kalinin,et al.  Locally Controlled Cu-Ion Transport in Layered Ferroelectric CuInP2S6. , 2018, ACS applied materials & interfaces.

[20]  Pinshane Y. Huang,et al.  Strain Modulation of Graphene by Nanoscale Substrate Curvatures: A Molecular View. , 2018, Nano letters.

[21]  M. McGuire,et al.  Metal Thio‐ and Selenophosphates as Multifunctional van der Waals Layered Materials , 2017, Advanced materials.

[22]  Yang Ren,et al.  Cation-Eutectic Transition via Sublattice Melting in CuInP2S6/In4/3P2S6 van der Waals Layered Crystals. , 2017, ACS nano.

[23]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[24]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[25]  P. Ajayan,et al.  Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes , 2016, Nature Communications.

[26]  M. Guennou,et al.  Theory of antiferroelectric phase transitions , 2016, 1601.05687.

[27]  Sergei V. Kalinin,et al.  CuInP₂S₆ Room Temperature Layered Ferroelectric. , 2015, Nano letters.

[28]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[29]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[30]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[31]  L. Eric Cross,et al.  Domains in Ferroic Crystals and Thin Films , 2010 .

[32]  David A. Scrymgeour,et al.  Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall , 2005, cond-mat/0503230.

[33]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[34]  V. Maisonneuve,et al.  Copper sublattice ordering in layered CuMP2Se6 (M=In, Cr) , 1999 .

[35]  V. Maisonneuve,et al.  Ferrielectric ordering in lamellar CuInP 2 S 6 , 1997 .

[36]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .