Modeling and characterization of back-relaxation of ionic electroactive polymer actuators

[1]  Q. Pei,et al.  Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox , 1992 .

[2]  K. Asaka,et al.  Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation , 2011 .

[3]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[4]  Yasuo Kuga,et al.  Mechanical stability optimization of Flemion-based composite artificial muscles by use of proper solvent , 2006 .

[5]  D. Caldwell,et al.  Chemically stimulated pseudo-muscular actuation , 1990 .

[6]  Y. Cohen Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality , 2001 .

[7]  Yoseph Bar-Cohen,et al.  Measurements and macro models of ionomeric polymer-metal composites (IPMC) , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Siavouche Nemat-Nasser,et al.  Tailoring actuation of ionic polymer metal composites through cation combination , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  K. Asaka,et al.  High-performance polymer actuators based on poly(ethylene oxide) and single-walled carbon nanotube–ionic liquid-based gels , 2014 .

[10]  Sia Nemat-Nassera,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[11]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[12]  K. Newbury,et al.  Characterization, Modeling, and Control of Ionic Polymer Transducers , 2002 .

[13]  Kinji Asaka,et al.  Preparation of Gold−Solid Polymer Electrolyte Composites As Electric Stimuli-Responsive Materials , 2000 .

[14]  Mohsen Shahinpoor,et al.  Ionic Polymer-Metal Composites (IPMCs) as dexterous manipulators and tactile sensors for minimally invasive robotic surgery , 2012, Smart Structures.

[16]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[17]  D. Leo,et al.  Softening and heating effects in ionic polymer transducers: An experimental investigation , 2013 .

[18]  Sia Nemat-Nassera,et al.  Micromechanics of actuation of ionic polymer-metal composites , 2014 .

[19]  Masayoshi Watanabe,et al.  Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. , 2012, The journal of physical chemistry. B.

[20]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[21]  Yoshihito Osada,et al.  Reversible volume change of microparticles in an electric field , 1989 .

[22]  K. Asaka,et al.  Actuator properties of the complexes composed by carbon nanotube and ionic liquid: The effects of additives , 2009 .

[23]  D. Ricci,et al.  Multi‐walled carbon nanotubes plastic actuator , 2009 .

[24]  Bishakh Bhattacharya,et al.  An active vibration control strategy for a flexible link using distributed ionic polymer metal composites , 2007 .

[25]  Kinji Asaka,et al.  Electrostress Diffusion Coupling Model for Polyelectrolyte Gels , 2005 .

[26]  Kinji Asaka,et al.  Electroactive Shape-Fixing of Bucky-Gel Actuators , 2015, IEEE/ASME Transactions on Mechatronics.

[27]  D. Segalman,et al.  Theory and application of electrically controlled polymeric gels , 1992 .

[28]  Robert Valner,et al.  Electrochemical actuation of multiwall carbon nanotube fiber with embedded carbide-derived carbon particles , 2015 .

[29]  Woosung Yang,et al.  Carbon nanotube–graphene composite for ionic polymer actuators , 2012 .

[30]  D. Leo,et al.  Ionic liquids as stable solvents for ionic polymer transducers , 2004 .

[31]  S. Tsuchitani,et al.  Nafion®-based polymer actuators with ionic liquids as solvent incorporated at room temperature , 2009 .

[32]  D. Leo,et al.  Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers , 2007 .

[33]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[34]  Barbar J. Akle,et al.  High-strain ionomeric–ionic liquid electroactive actuators , 2006 .

[35]  Yoshihito Osada,et al.  ELECTRICALLY ACTIVATED MECHANOCHEMICAL DEVICES USING POLYELECTROLYTE GELS , 1985 .

[36]  M. Shahinpoor Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles , 1992 .

[37]  Peter S. Fedkiw,et al.  An Impregnation‐Reduction Method to Prepare Electrodes on Nafion SPE , 1989 .

[38]  Enn Lust,et al.  In situ measurements with CPC micro-actuators using SEM , 2014, Smart Structures.

[39]  Siavouche Nemat-Nasser,et al.  Experimental study of Nafion- and Flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[40]  Hirohisa Tamagawa,et al.  Experimental estimate of viscoelastic properties for ionic polymer-metal composites. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  K. Asaka,et al.  High performance polymer actuators based on multi-walled carbon nanotubes that surpass the performance of those containing single-walled carbon nanotubes: Effects of ionic liquid and composition , 2012 .

[42]  Kwang J. Kim,et al.  Can we overcome the relaxation of ionic polymer-metal composites? , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[43]  M. Firestone,et al.  The Design of Polymeric Ionic Liquids for the Preparation of Functional Materials , 2009 .

[44]  T. Takamori,et al.  Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[45]  K. Asaka,et al.  Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel , 2011 .

[46]  K. Kim,et al.  The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles , 2000 .

[47]  Kwang J. Kim,et al.  Palladium buffer-layered high performance ionic polymer–metal composites , 2008 .

[48]  Zhiyong Sun,et al.  A novel adaptive force control method for IPMC manipulation , 2012 .

[49]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[50]  Jinho Choi,et al.  Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer–metal composite sensors , 2010 .

[51]  D. Jacobson,et al.  Electrically stimulated gradients in water and counterion concentrations within electroactive polymer actuators , 2010 .

[52]  Evaluation of basic operating characteristics of ion conductive polymer actuator using ionic liquid , 2008, 2008 SICE Annual Conference.

[53]  Toshi Takamori,et al.  Development of a distributed actuation device consisting of soft gel actuator elements , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[54]  G. Anbarjafari,et al.  In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators , 2016 .

[55]  Yasuo Kuga,et al.  A flemion-based actuator with ionic liquid as solvent , 2007 .

[56]  Woosoon Yim,et al.  A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control , 2014 .

[57]  Kam K. Leang,et al.  Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes , 2012 .

[58]  A. Huxley,et al.  Structural Changes in Muscle During Contraction: Interference Microscopy of Living Muscle Fibres , 1954, Nature.

[59]  Toshi Takamori,et al.  Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[60]  K. Oguro Bending of an Ion-Conducting polymer Film-Electrode Composite by an Electric Stimulus at Low Voltage , 1992 .

[61]  Ronald Lumia,et al.  Distributed force simulation for arbitrarily shaped IPMC actuators , 2013 .

[62]  S. Nemat-Nasser,et al.  Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms , 2003 .

[63]  Zhiyong Fan,et al.  Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers , 2011 .

[64]  Donald J. Leo,et al.  Hydration and Control Assessment of Ionic Polymer Actuators , 2003 .

[65]  Martin L. Yarmush,et al.  Kinetics of electrically and chemically induced swelling in polyelectrolyte gels , 1990 .

[66]  Kwang J. Kim,et al.  A Novel Ionic Polymer Metal ZnO Composite (IPMZC) , 2011, Sensors.

[67]  K. Sadeghipour,et al.  Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper , 1992 .

[68]  Alvo Aabloo,et al.  Carbon aerogel based electrode material for EAP actuators , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[69]  M. Kruusmaa,et al.  A Distributed Model of Ionomeric Polymer Metal Composite , 2009 .

[70]  Alvo Aabloo,et al.  IPMC mechanoelectrical transduction: its scalability and optimization , 2013 .

[71]  Electroactive polymer actuator based on a reduced graphene electrode , 2014 .

[72]  T. Fukuda,et al.  Micro catheter system with active guide wire-structure, experimental results and characteristic evaluation of active guide wire catheter using ICPF actuator , 1994, 1994 5th International Symposium on Micro Machine and Human Science Proceedings.

[73]  Qiming Zhang,et al.  Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids , 2012 .

[74]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[75]  L. Madsen,et al.  The role of water in transport of ionic liquids in polymeric artificial muscle actuators , 2009 .

[76]  Eiichi Shoji,et al.  Effects of humidity on the performance of ionic polymer-metal composite actuators: experimental study of the back-relaxation of actuators. , 2007, The journal of physical chemistry. B.

[77]  Kinji Asaka,et al.  Electromechanical characteristics of actuators based on carbide-derived carbon , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[78]  Jang-Woo Lee,et al.  High-performance polymer ionomer–ionic liquid membrane IPMC actuator , 2013, Research on Chemical Intermediates.

[79]  Rauno Temmer,et al.  Electrochemistry and novel applications of chemically synthesized conductive polymer electrodes , 2014 .

[80]  Kinji Asaka,et al.  Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics , 2000 .

[81]  Minoru Taya,et al.  Solid polymer electrolyte actuator using electrode reaction , 2001 .

[82]  C. Domenici,et al.  Contractile behavior of electrically activated mechanochemical polymer actuators. , 1986, ASAIO transactions.

[83]  Kinji Asaka,et al.  Polymer electrolyte actuator with gold electrodes , 1999, Smart Structures.

[84]  R. Roscoe,et al.  Mechanical Models for the Representation of Visco-Elastic Properties , 1950 .

[85]  D. Leo,et al.  Correlation of capacitance and actuation in ionomeric polymer transducers , 2005 .

[86]  K. R. Seddon,et al.  Applications of Ionic Liquids in the Chemical Industry , 2008 .

[87]  K. Osseo-asare,et al.  Mass transfer in Nation membrane systems: Effects of ionic size and charge on selectivity , 1991 .

[88]  Masaki Omiya,et al.  Deformation behaviors of ionic-polymer–metal composite actuator with palladium electrodes for various solvents, temperatures, and frequencies , 2012 .

[89]  Mohsen Shahinpoor,et al.  Mathematical modeling of ionic interactions and deformation in ionic polymer-metal composite artificial muscles , 1998, Smart Structures.