The Medvedev lattice of computably closed sets
暂无分享,去创建一个
[1] Douglas Cenzer,et al. Density of the Medvedev lattice of Π01 classes , 2003, Arch. Math. Log..
[2] Stephen Binns. A splitting theorem for the Medvedev and Muchnik lattices , 2003, Math. Log. Q..
[3] Douglas Cenzer. ∏10 Classes in Computability Theory , 1999, Handbook of Computability Theory.
[4] Andrea Sorbi,et al. Some Quotient Lattices of the Medvedev Lattice , 1991, Math. Log. Q..
[5] Andrea Sorbi. Some Remarks on the Algebraic Structure of the Medvedev Lattice , 1990, J. Symb. Log..
[6] P. Odifreddi. The theory of functions and sets of natural numbers , 1989 .
[7] P. Odifreddi. Classical recursion theory , 1989 .
[8] Stephen G. Simpson,et al. Embeddings into the Medvedev and Muchnik lattices of Π01 classes , 2004, Arch. Math. Log..
[9] Andrea Sorbi,et al. Embedding Brouwer Algebras in the Medvedev Lattice , 1991, Notre Dame J. Formal Log..
[10] H. Priestley,et al. Distributive Lattices , 2004 .
[11] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[12] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[13] Carl G. Jockusch,et al. Countable retracing functions and $\Pi_2{}^0$ predicates. , 1969 .
[14] A. Kucera. Measure, Π10-classes and complete extensions of PA , 1985 .
[15] Birgit Truust Poulsen. The Medvedev lattice of degrees of difficulty , 1970 .
[16] Sebastiaan Terwijn. Constructive Logic and the Medvedev Lattice , 2006, Notre Dame J. Formal Log..
[17] V. Jankov. The Calculus of the Weak "law of Excluded Middle" , 1968 .
[18] Sebastiaan A. Terwijn,et al. Complexity and Randomness , 2003 .
[19] E. Z. Skvortsova. A faithful interpretation of the intuitionistic propositional calculus by means of an initial segment of the Medvedev lattice , 1988 .
[20] Robert I. Soare,et al. Degrees of members of Π10 classes , 1972 .